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Abstract

Approximate solutions for the spinup of a near axisymmetric dual-spin gy-

rostat are derived using the straightforward expansion method and the methoc of

multiple scales. Two method of multiple scale solutions are presented. The first

is derived using cartesian coordinates while the second is derived using cylindrical

coordinates. The multiple scales solutions are compared to numerically integrated

results for oblate and prolate configurations. A comparison for flat spin recovery is

also accomplished. Excellent results are obtained for oblate configurations. Trajec-

tory separatrix crossings hindered the results for prolate configurations and fiat spin

recoveries.
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AN APPROXIMATE SOLUTION FOR THE SPINUP DYNAMICS

OF NEAR AXISYMMETRIC AXIAL GYROSTATS USING THE

METHOD OF MULTIPLE SCALES

L Introduction

In 1958, the United States of America launched Explorer I into orbit as its

answer to the Soviet Unions' Sputnik. The great space race between the two nations

began, and unfortunately, the United States' entry suffered a serious flaw. Explorer

I was shaped like a missile and was designed to rotate about its minimum moment

of inertia axis. Ninety minutes after insertion into its orbit, Explorer I was tumbling

end-over-end and the engineers at the Jet Propulsion Laboratory did not know why

(9:129). In the following years, U.S. engineers learned a great deal about rotational

dynamics.

By 1960, engineers accepted the idea that internal energy dissipation, caused

by spacecraft flexibility, violated the assumptions of the classical analyses of Euler.

The result was the belief that all spin stabilized satellites must be shaped like "tuna

cans" so that spin stabilization could be achieved through spin about the maximum

moment of inertia axis. As satellite design progressed, the idea of an inertial platform

became increasingly attractive. With such a platform, sensors could be continuously

pointed at a source rather than rely on scanned coverage. The first satellite to employ

such a platform was launched in 1962 and was called the Orbiting Solar Observatory,

OSO-1(13:761). This satellite was still designed to spin about its maximum moment

of inertia axis, but the concept of an inertial platform was flown (9:131).

As satellites progressed even further, however, they were designed to accom-

plish more tasks and as a result, became bigger. The constraint to such large satellites
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was the size of the payload shroud used to protect them during assent to orbit. The

aerodynamics of rocket design dictated a long slender shape which conflicted with

the short squat shape required for spin stability. The lessons of Explorer I, however,

were firmly entrenched in the minds of our satellite designers. Surprisingly, Mr.

Vernon Landon, an employee at RCA, deduced the instability about the minimum

moment of inertia axis due to energy dissipation as early as 1957. Further, by 1962,

Mr. Landon knew that stable spin about the minimum moment of inertia axis was

possible if enough angular momentum was stored in a rigid rotor aligned with the

spin axis of the spacecraft (9:130). Unfortunately, his efforts went unrecognized for

many years.

In 1965, Mr. Tony lorillo of Hughes Aircraft Company, found that by putting

a damper on the platform section of a dual-spin spacecraft, spin stabilization for

spacecraft of any inertia distribution was possible. By using an energy sink analysis,

it was shown that if the energy dissipation rate of the platform is much greater than

the energy dissipation rate of the rotor, spin stabilization could be achieved for a

spacecraft spinning about its minor moment of inertia axis (14:151-15,t).

The advantages of dual-spin spacecraft are many and it is used on many of

todays satellites. There is an important problem in the dynamics of dual-spin space-

craft to which this thesis addresses itself. That problem is concerned with the spinup

of the rotor such that spin stability can be achieved. The spinup maneuver can occur

at two different instances in the spacecrafts lifespan. The first is when a satellite is

initially deployed. As the satellite is inserted into its orbit, the rotor and platform

are both spinning at the same rate and their relative angular velocity is zero. In order

to give the platf -rm an essentially inertial reference, a torque motor is incorporated

to spinup the rotor and thereafter maintain the desired relative rotation rate. The

initial spinup causes the angular momentum of the platform to be transferred to

the rotor which, in turn, causes the platform to despin. The second instance occurs

if the torque motor used to maintain a specified spin rate between the rotor and
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platform fails. Internal friction will eventually reduce the relative spin rate between

the rotor and platform to zero. Continued energy dissipation will cause the satellite

to seek its maximum moment of inertia axis. Should failure of the torque motor be

corrected, the relative spin rate between the rotor and platform and the satellite's

attitude could be reestablished by spinning up the rotor.

1.1 Problem Statement

The objective of this thesis is to derive an approximate solution to the equa-

tions of motion that describe the spinup dynamics of near axisymmetric dual-spin

satellites. Specifically, the method of multiple scales perturbation technique will be

used to develop these approximate solutions valid for dual-spin satellites with small

differences in transverse inertias being spun up with a non-zero axial torque. There

are several benefits associated with the development of approximate solutions. The

first is the reduction of computational time. If the attitude of a spacecraft is desired

for a particular time in the future, the equations of motion must be integrated from

the initial state to the time in question. If an approximate solution is available, the

time need only be placed in the equation to determine the future attitude. Second,

approximate solutions provide valuable insight into the dynamics of a rotating body

as its trajectory passes through a separatrix. Third, with an increased level of under-

standing of the spinup dynamics attained, weight swvings for future spacecraft may

be realized since torque values for spinup motors can be more accurately predicted.

Finally, development of approximate solution techniques further enhance the body

of knowledge available for the design of future space systems (3:860).

1.2 Related Work

Four different groups of researchers have completed work in approximate so-

lutions that is most closely related to the type of dual-spin satellite modelled in

this thesis. Sen and Bainum (13) derived an approximate solution for the spinup

of an oblate satellite. Using a perturbation technique, they developed dimensional
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equations for a near axisymmetric gyrostat model of the Small Astronomy Satellite

(SAS-A). Their results only included the transverse components of angular momen-

tum. While they were able to capture the amplitude of the system, they were not

able to account for the increase in frequency during the spinup maneuver.

The work of Gebman and Mingori (3) was completed in 1976 and was concerned

with an approximate solution for a flat spin recovery. Their solution incorporated

the use of a multiple scales method in which their initial conditions were fixed at the

exact equilibrium point for flat spin recovery. Their solution proved satisfactory for

this one particular case.

A method by which the spinup dynamics of a dual-spin satellite in an external

torque free environment could be analyzed has recently been developed by Hall (5).

By plotting the energy of the satellite versus the angular momentum of the rotor, he

was able to capture the dynamics of three distinct spinup problems. The first two

problems were oblate and prolate spinup which are associated with the initial satellite

deployment. The terms "oblate" and "prolate" refer to the inertia distribution of

the satellite. The third problem was termed transverse spinup and is associated with

the satellite attitude recovery problem should the torque motor fail. This problem is

commonly referred to as flat spin recovery. Hall took the four first order differential

equations that describe the dynamics of a rigid dual-spin satellite and reduced them

to a single first-order non-autonomous ordinary differential equation for the slow

evolution of kinetic energy during spinup. This reduction was made possible by

using the conservation of angular momentum and the method of averaging. Previous

studies of spin-up dynamics had been restricted to particular classes of gyrostats or

particular regions of phase space. Hall, however, provides a unified treatment for

all gyrostats with his discovery of a symmetry relating oblate and prolate gyrostats

which reduce the number of cases to be investigated. A significant difference in

notation between this thesis and Hall's work is in the use of the variable "e". Hall

used "e" to denote the non-dimensional torque applied by the platform on the rotor.
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This thesis used the variable "g" to denote this value while "e" is used as the small

parameter in the perturbation methods.

Kinney (8) linearized the equations of motion for the spinup of an ideal ax-

ial gyrostat about the oblate and prolate equilibrium points. He then applied the

WKB (Wentzel, Krammers, and Brillouin) approximation method for the linearized

equations of motion. Because the equations of motion were linearized about the

equilibrium points, his approximate solutions were forced to stay very close to these

points. While obtaining good results for oblate spinup, the WKB solution failed for

prolate spinup due to its inherent inability to adapt to the bifurcations associated

with the prolate equilibrium point.

1.3 Outline of Thesis

The thesis begins with a review of the dynamics of a dual-spin spacecraft.

Chapter 2 first develops the equations of motion for the spinup maneuver and then

transforms them to a non-dimensional system of equations. The boundary conditions

for the spinup maneuver are discussed and a numerical value for the end of spinup

is derived. In order to provide a treatment for all types of dual-spin spacecraft, the

dynamical shape of the spacecraft in terms of its non-dimensional moments of inertia

is discussed. Finally, a review of the three types of spinup problems (oblate, prolate,

and transverse) is presented.

Chapter 3 employs the straightforward expansion method to the equations of

motion. While this method fails in general, it provides insight for the development of

an approximate solution using the method of multiple scales. Results for an oblate

spacecraft are presented to show the inadequacy of this expansion.

Chapter 4 employs the method of multiple scales to derive another approximate

solution. Excellent results are obtained for oblate spacecraft. Results for prolate

spacecraft and transverse spinup are also presented and discussed.
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Chapter 5 also employs the method of multiple scales, but, applies the method

to the equations of motion after they are transformed to cylindrical coordinates.

Comparison between the two multiple scales approximate solutions are presented for

the three spinup problems.
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II. Dynamics of the Dual-Spin Spacecraft

The spacecraft to be modelled is as shown in Fig 2.1 (5:26). The model con-

sists of a rigid body free to rotate in space. The relative motion of the platform

('P) and rotor (R), however, is constrained to rotation about a rigid frictionless

shaft aligned with a principal axis (i,). This model accommodates an asymmetric

spacecraft through the assumption that the platform is asymmetric, but the rotor

is axisymmetric about a principal axis which is also the relative rotation axis. This

assumption leads to a constant moment of inertia tensor for the modelled spacecraft,

and therefore, by definition is also known as a gyrostat. The vector h represents the

total angular momentum of the gyrostat. Because the assumption of no external

torques is made, the magnitude of the angular momentum vector must be conserved

and the angular momentum vector is fixed in an inertial reference frame.

h= h + h2 + h3 = constant (2.1)

In order to derive the equations of motion of the gyrostat, the angular velocities,

torque, moments of inertia, and angular momentum of the rotor and platform must

first be defined (5:28).

h, = Ill + Iow, = angular momentum of "P + R about il

hi = Ihwi = angular momentum of P + R about ii, i=2,3

ha = I.(. + w1) = angular momentum of R about il

• Ii = moment of inertia of P + "R about ýj, i = 1,2,3

* I. = axial moment of inertia of R about il

P = I - I. = axial moment of inertia of P about e-

e wi = angular velocity of P about ý1, i=1,2,3

* w, = angular velocity of R7 about il relative to P'
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J2

Figure 2.1. Model of axial gyrostat. The asymmetric platform is denoted as P
while the axisymmetric rotor is denoted as R. The body frame Y' is
aligned with the principle axis and rotates relative to the inertial frame
.. The total angular momentum vector is denoted as h and is constant
in direction and magnitude.
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* g. = torque applied by P on R about il

* ii = principal axes of P + R, i = 1,2,3

* t = time

Note that the angular velocity vector is relative to an inertial reference frame and

that the transverse moments of inertia of the rotor are embodied in 12 and 13. A

motor is incorporated in the gyrostat for the spinup maneuver to provide torque to

both bodies. While the transverse torques between the two bodies are present, they

are not required for the equations of motion. As noted, h. is the angular momentum

of the R about il. Therefore the time derivative of this angular momentum is the

axial torque applied by the platform on the rotor.

d- -- g. (2.2)

The angular momentum components of the gyrostat may now be written.

h = h, + hR (2.3)

hi 1, 0 0 1,00

h2 h2 0 120 W2 + 000 0 (2.4)

h3 J 0 0 13 W3 000 0

11w1 + Iw

h 12W2  (2.5)

13W3

In order to get the time rate of change of the angular momentum of the gyrostat in

an inertial frame, the derivative of the angular momentum vector is taken via the

standard convention.
idh= eh+ x×h (2.6)
dt dt
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This yields

h, - w3 h2 +w 2h 01
-dh= h 2 +w 3h,- wlh3 0 (2.7)
dt

h3 -w 2 h +wlh2 0

The derivative of the angular momentum vector is set equal to zero since the gyrostat

is modelled in an external torque free environment. From Eq. 2.5 we see h=

Iiw1 + I.ow which can be solved for w, to yield

h= /Iw . (2.8)

By using the moment of inertia of P about ii (Ip = I, - I.) and the angular

momentum of R about i, (h. = I.(w, + wl)) Eq. 2.8 can be rearranged to yield

hi= - (2.9)
'p

The components of '¶h can now be written in terms of angular momentum and

moments of inertia. From Eq. 2.7

Sh, = w 3h 2 - w2 h 3
dt

= w 3 2W2 - W2 I3W3

= (12 - 1 3 )w2w3

finally
d (I2 3 h2h3 (2.10)

dt 1213

Similarly
ed-h2 = -w 3sh + wlh 3  (2.11)

using Eq. 2.9
Sh2 = -w 3 h1 + (hi -') h 3  (2.12)
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eh= [h2 13-1ph- h3 (2.13)

and
d-h3 = w2h1 - 11h2  (2.14)
it

e d Fj,- Al
S=h3 

I - 2h , + y ] h2  (2.15)

Equations 2.2, 2.10, 2.13 and 2.15 represent the complete system of equations that

describe the spinup dynamics of the gyrostat. The cone angle (also known as the

nutation angle) is the angle between the angular momentum vector and the symmetry

axis of the gyrostat. In terms of Euler angles it is defined as (5:28)

17= co&-1 (h = cos- 1 (L,) (2.16)

2.1 Dimensionless Equations

In order to simplify the equations of motion further, the variables are non-

dimensionalized using the following transformations first developed by Guelman

(4:111) and refined by Hall (5:30).

"* xi = hi/h - dimensionless component of angular momentum, i = 1, 2,3

"* = h.1h - dimensionless angular momentum of R about ii

"• t = h/Ip - dimensionless time

"* g = (gIIp)/h 2 - dimensionless torque applied by the P to the *R about j

The non-dimensional equations will now be with respect to the non-dimensional

time t and denoted as () = dO/dt. Further, the moments of inertia are non-

dimensionalized using the following definition by Hall (5:30)

1 'p j = 1,2,3 (2.17)
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Simple substitution into Eqs. 2.10 2.13 and 2.15 yields the following set of dimen-

sionless equations on which the rest of the analysis follows

=i = (i 2 - i 3 )X 2 X3  (2.18)

k2 = (i 3xI - p)x3 (2.19)

k3 = -(/2xI- p)x 2  (2.20)

ý = g (2.21)

Note that there has been no change in the angular momentum integral (Eq. 2.1)

which now becomes

x 2 x 3 =(2.22)

Also note that the cone angle is reduced to

77= cos _'(xI) (2.23)

2.2 SpinUp Boundary Conditions

The spinup problem in this analysis usually begins with the gyrostat operating

such that the relative velocity between the platform and rotor is close to zero. This

would be the case in both the initial satellite deployment or a satellite that has

degraded to a flat spin for an extended period of time. The spinup maneuver begins

when a small constant torque g is applied to increase the angular momentum of the

rotor to a value near I = 1. The value of I = 1 is apparent if you recognize that for

an inertially fixed platform, w, (angular velocity of "P about gi) = 0. Substituting

is into Eq. 2.9 yields

w_ = (IA) (2.24)

If W, = 0 then is = 1 for the spun up condition (5:58-59).
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Since p = g implies pu = gt + P0, the lower boundary for j is not necessarily 0.

Having po 6 0 implies that the rotor is spinning relative to the platform with some

initial angular velocity condition. This only affects the amount of time required to

complete the spinup maneuver since

t P1,al - -0 1 jIi (2.25)
= -g g

2.3 The Dynamical Shape of the Gyrostat

(5:33-35) It can be seen from Eq. 2.17 that the three dimensionless inertia

parameters retain their relative values with respect to the original moments of inertia.

Mathematically,

Ij > Ik •4= ij > ik; j, k = 1,2, 3 (2.26)

Further, the sign of i2 and i 3 are determined by the relationship between I4 and 12

or 13.

Ip>Ik =• i<<O

Ip<Ikj ik >O

k = 2,3

Since only i2 and i3 appear in Eqs. 2.18 - 2.21, these parameters define the dynamical

shape of the gyrostat. Using the standard definitions for satellite shape, the following

possibilities are available.

* if i3 < i2 < 0 => Oblate gyrostat

* if i2 > i3 > 0 =4 Prolate gyrostat

* if i 2 > 0 > i 3 =0 Intermediate gyrostat

The assumption is made that i 2 > i 3. The other non-dimensional inertia parameter

simplifies to ii = 1/117 which is the ratio of the axial inertia of R7 to the axial inertia
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Figure 2.2. Allowable values of i2 and i3 for a gyrostat with a rod shaped rotor
(it = 0). Oblate gyrostats have negative values of i2 and i3 . Prolate
gyrostats have positive values of i2 and i3.

of P + X. This implies that 0 < it < 1 which has the limiting physical shape of a

rod shaped rotor (it = 0) to a rod shaped platform (it = 1). The effect of it on the

gyrostats dynamics are described in Hall's work (5:33-35). He shows that by using

the triangle inequalities for the moments of inertia, it limits the physically possible

values of i2 and i3 through the following relations.

S(I - 2i, + iii2)/(i2 -. it) (I)

i= (2i 2 - i1i2 - 1)/(i2-i) (II)

(I - ili2)/(2 - i, - i2) (III)

A graphical presentation is shown in Figure 2.2 for a gyrostat that has i1 = 0. In

accordance with the relations given above, oblate gyrostats will have negative i 2 and

i3 values while prolate gyrostats will have positive values of i2 and i3. Intermediate

gyrostats will not be discussed in this thesis.
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Hall also demonstrates that il impacts the dynamics of the gyrostat through

its effect on the initial conditions. Note that the definition of oblate and prolate do

not involve il. Because spinup typically begins with the platform and rotor spinning

as a single rigid body (wo = 0), the following relations hold.

hi= I1w, + 11w. = 18w1

Since
hi I=wi (2.27)

and
h. -h h (2.28)

using Eq. 2.27
I h I.
h= hyxi = IxI = 2ixI (2.29)

This initial spin can be about either the major or minor moment of inertia axis of

the gyrostat. For example, an all spun prolate spacecraft can be represented by two

possibilities (6:644).

"* if il > i2 > i3 > 0 then , is the major axis and the state is x, = 1, x 2 = x3 = 0,

A - 1.

"* if i2 > il > i3 > 0 then i2 is the major axis and the state is x 2 = 1,

x, = x3 = # = 0. This is commonly referred to as a flat spin condition.

The reader is referred to reference (5) for an in-depth discussion of the dimensionless

parameters.
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2.4 Spinup Problems

To describe the nature of the different spinup problems, an understanding of

the system dynamics when g = 0 is first required. As can be seen from Eq. 2.21,

setting g = 0 implies that the angular momentum of R about ii is a constant value.

Because the angular momentum first integral cannot be violated in a torque free

environment, the motion of the gyrostat is confined to one dimensional curves on

the momentum sphere defined by Eq. 2.22. Hall (5:Chapter 5) demonstrated that

when g = 0, Eqs. 2.18-2.20 reduce to a single integral which is solved using Jacobi's

elliptic functions. In Hall's development of the reduction of quadrature for g = 0,

he derives an energy like constant, y, which defines lines of constant "energy" on

the momentum sphere (5:39-42). The "energy" term, y, represents a functional

combination of the three integrals of motion when g = 0. The three integrals are

total angular momentum, axial angular momentum, and rotational kinetic energy.

= {(i + i3 )OX - (i2 - i 3 )(X2 -_X) - 4px, - (i2 + i3)} (2.30)

Because this constant is only valid for p = constant, the momentum sphere has a

different topology for each value of p. Figure 2.3 depicts a progression of momentum

spheres for a near axisymmetric gyrostat as p increases. This is essentially a graphical

presentation of a spinup maneuver for either an oblate or prolate gyrostat. In Section

2.3, we discussed the non-dimensional moments of inertia i2 and i6. If both these

values are negative, the gyrostat is oblate and its energy for a particular value of u

is associated with a polhode that lies in the upper (northern) half of the momentum

sphere (note: "upper" and "lower" are in reference to the spheres shown in Figure

2.3 regardless of the coordinate axis). If i2 and i3 are both positive, the gyrostat is

prolate and its energy is associated with polhodes that lie in the lower (southern)

half of the momentum sphere. Note that the number of equilibrium points on the

momentum sphere vary as the values of p change. Hall's work demonstrates that

for p less than the smaller of 1i21 or 1i36, there are six equilibrium points. The six
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Table 2.1. Equilibrium Points

Equilibrium Pts Validity
(±1, 0,0 ) V g

So, __i)2 g=0

S+ 

1 - (0s/i2)2,0 g = 0

equilibrium points are listed in Table 2.1 and were first published in Guelman's work

(4:112).

The points 0 ,, and P. in Figure 2.3 are centers for an oblate and prolate

gyrostat respectively. The two points UM, indicate the unstable equilibria for unstable

flat spin motion. The two points labeled F. located within the unstable flat spin

separatrix correspond to the centers of stable flat spin motion. As p increases,

the separatrices associated with flat spin motion migrate to the prolate equilibrium

point. At p equal to the smaller of 1i21 or IisI, the two saddles of the unstable flat

spin motion converge to form a single saddle at the south pole and, as a result,

with the smaller of 1i21 or 1i31 < i < the larger of 1i21 or Ji31, there are only four

equilibrium points. Finally, at i equal to the larger of 1i21 or ti3I, the two stable

flat spin centers converge with the saddle at the south pole to form a center. For

A greater than the larger of ji2j or Ii3I only two equilibrium points remain and no

further bifurcations occur. It is important not to visualize the polhodes as circular

disks. The momentum sphere contains separatrices which affect all the polhodes

on the sphere. A more realistic concept of what is seen as circles is a surface of a

hyperboloid or a "Pringles potato chip".

Unfortunately, the spinup problem involves the case when g $ 0. When g # 0,

there are no polhodes defined by Eq. 2.30 since p is no longer constant. Further, the

separatrices which separate the different kinds of motion in a g = 0 system no longer
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Figure 2.3. Momentum spheres for a near axisymmetric gyrostat with a one percent
difference in transverse inertias and a range of I's.
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separate different regions of phase space. It is entirely possible for a trajectory to

cross the "instantaneous" separatrix as # is increasing. The term "instantaneous"

is used since at each value of p, there exists a range of energy values which can be

plotted as instantaneous polhodes on the momentum sphere. One way to envision

the dynamics is to think of the trajectory moving on the momentum sphere as

the instantaneous separatrices migrate to P.. An important conceptual point is to

realize that for near axisymmetric gyrostats, the trajectory will not move towards

the oblate or prolate equilibrium points. In fact, without a significant asymmetry

in the transverse moments of inertia, the x, component of angular momentum will

stay at approximately the same value. This implies that the cone angle at the end

of spinup is not going to vary significantly from. initial value.

As mentioned earlier, trajectories for oblate gyrostats will begin in the northern

hemisphere. The instantaneous separatrices on the momentum sphere will migrate

toward the south pole, so the oblate trajectory will not experience any separatrix

crossings. Prolate gyrostats begin spiuup in the southern hemisphere. As the spinup

progresses, the trajectory is influenced by the instantaneous separatrices. Specifi-

cally, as the trajectory crosses an instantaneous separatrix, its frequency decreases

until the second bifurcation occurs. At this point, the trajectory paths look similar

to those present before the separatrix crossing and the frequency should increase

again. Transverse spinup of a prolate gyrostat begins spinup near one of the stable

flat spin equilibrium points. In order to keep the trajectory near the equilibrium

point, the gyrostat must have an extremely small torque or substantial asymme-

try. Since this thesis deals with near axisymmetric gyrostats, the second option is

not considered. If the gyrostat has too much torque, the trajectory will cross the

instantaneous :Traratrix. Obviously, with a higher torque, this will happen quicker.

Motion near a separatrix is highly non-linear and, therefore, difficult to approx-

imate. As a result, we expect to experience some difficulties associated with prolate

and transverse spinup. As mentioned above, the problem of defining exactly where
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the instantaneous separatrix crossing occurs is extremely difficult. The reason is the

constantly changing nature of the instantaneous separatrices as the spinup maneuver

progresses. To define the separatrix crossing, the rate at which the instantaneous

separatrices are moving on the momentum sphere along with the exact position and

rate of movement of the angular momentum vector on the momentum sphere would

have to be known. Given the extremely non-linear nature of the motion in this region

along with an infinite number of initial conditions; the difficulty of the problem can

be appreciated.

2.5 Summary

In this chapter, we have derived the non-dimensional equations of motion that

describe the spinup of an axial gyrostat. The spinup boundary conditions have been

specified and a discussion of the three types of spinup problems in terms of their

trajectories' relationship to the nonlinear effects of separatrices has been presented.

In the next chapter, the straightforward expansion method is used to outline the

general flow of an approximate solution for the governing equations.
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III. The Straightforward Expansion

We begin the analysis using the straightforward expansion method as a pos-

sible perturbation technique. The rationale behind using this approach is twofold.

First, by employing the straightforward expansion method, a general flow of the

solution using perturbation theory is presented. Second, the method is employed to

determine if valid solutions can be obtained for larger torque values. A well known

limitation of the straightforward expansion method is that it produces terms which

are proportional to the independent variable, t. These terms, commonly referred to

as secular terms, invalidate an approximate solution at large values of the indepen-

dent variable because they grow without bound. However, for larger values of g,

Eq. 2.25 shows that the amount of time required for the spinup problem is reduced.

We wish to derive an approximate solution for the spinup of a near axisym-

metric gyrostat which have the following equations of motion (Eqs. 2.18-2.21).

ki = (i 2 - i 3)x 2x 3

i2 = (i3xI - ;)x 3

x3 = -(i 2xl - I,)x2

This system is subject to the following initial conditions.

xi(O)

x(O) - 2(0) (3.1)

x3(0)

A(O)
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The small parameter which we use in the approximation is the difference in transverse

inertias

i2 - i3 = CI (3.2)

where a is 0(1). We begin with the assumption that each component of angular

momentum has a solution of the form

Xi = Xzo + ezil + e2z 2 + O(e 3); i = 1,2,3 (3.3)

Further, the time derivative of each component takes the form

xi = Xjo + £21 + C2ei2 + O(C3); i = 1,2,3 (3.4)

Note that xi refers to the total component of angular momentum while zxj refers

to the terms which make up the solution for xi. Substituting Eqs. 3.3 and 3.4 into

Eqs. 2.18-2.20 and collecting terms of e yields the following system of equations.

0(1): ,1o = 0 (3.5)

=20 = -(/A - i3zTO)X30 (3.6)

i3o = (IA - i3zlo)X2o (3.7)

O(C): iC1= a z 2oX30  (3.8)

Z21 = -(IS - i 3X1O)X31 + i3X11X30 (3.9)

Z31 = (IA - i3zlO)X21 - CZIoZ1o - i:3X11 2o (3.10)

Notice the important contribution of selecting the difference in transverse in-

ertias as the small parameter. Equations 2.18-2.20 are transformed from a set of

non-linear differential equations to systems of linear differential equations in each

power of e. Solving the 0(1) system of equations first, we immediately see that
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ZX0 = constant, leaving a set of coupled linear differential equations of the form

X= A(t)X (3.11)

where

A(t) 0 i3--10) (3.12)(p- i3XIo) 0

A =t + A0 (3.13)

This system has the solution

X = f(t,O)Xo (3.14)

where Xo are the initial conditions and 4 is the state transition matrix. While

coupled systems of differential equations with time varying coefficients are typically

difficult to solve, this system of equations contains a simple property which permits

a simple solution. We make use of the following relation (7:p. 600)

If A(t,)A(t2 ) = A(t 2)A(ti); then O(t,r) = expI A(o)do (3.15)

The A matrix in this system of equations satisfies the commutative property and so

the integration is easily done:

(~go + pO - i3Xio)do -= + (PO - i3XIo)t (3.16)

'0 2

We now make the following definitions.

k = -iO (3.17)

gt2
f(t) - L- + kt (3.18)

2
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The resulting state transition matrix is

O(t, 0) = exp [ -f (t) [cosf(t) -sinf(t) (3.19)
f(t) 0 sin f(t) cos f(t) I

Note that if we were to stop the expansion right here, we would be deriving an

exact solution to the equations of motion for a completely axisymmetric gyrostat

(i.e. e = 0). Application of the initial conditions to the 0(1) system solutions yields

the following result.

X1o = z1 (0) (3.20)

=20 z 2(0)cosf(t) - z3(0)sinf(t) (3.21)

X30 = X2(0)sinf(t) + X3(0)cosf(t) (3.22)

We now proceed to the O(e) system of equations shown here again for conve-

nience.

il 1-= X2aX30

i2i = -(#i - i3 XIO)z 31 + i3XI1X30

i31 = (- - iiOO- CXoX - i3XIz2o

Starting with the xlU term

Zi - {aX2oz 3 }d (3.23)

a {X2(O)X3(0) cos2 f(oa) + (X2(0) - X2(0)) cos f(a) sin f(o)

-X2 (0)X3(0) sin2 f(0r) 1d (3.24)
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The result, using the symbolic manipulation program Mathematica 2.0 for SPARC

by Wolfram Research Inc. (15), is

Si [ [Vr21 ir(k+ gt)] +C[V--i k t

- kC-r 2-S[)/]b (3.25)

with

b•- (2(O)2 cos- c- g3(0) cos g + 2:2(0)x3(0) sin

b2 = a -I( 22(0)2 sin- + X3(0)2 sin k2 + 2X2(0)X3(0) cos

The Fresnel Sine, denoted by "S", and Fresnel Cosine, denoted by "C", are functions

that are defined as (1:300)

C(X) = cos (r dt

S(x)-= sin 2 dt

Figure 3.1 depicts both of these functions. Note that as t -- oo, both functions

asymptotically approach 1. The Fresnel Sine and Fresnel Cosine can be approxi-

mated using the following functions.1 2_ ) 2- )
C(z) = 2 + psin (2) - qcos (x2)

S(X) = I - q sin (x x2) _ p Co. (r.2)

where

1 + .926x

2 + 1.729x + 3.104T2 (3.26)
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Figure 3.1. Fresnel Sine and Fresnel Cosine Functions.

1

q - 2 + 4.124z + 3.429X2 + 6.670X3  (3.27)

These approximations are valid to 2 x 10-3 for 0 < x < oo (1:302). An important

consideration is the singularity at x = -0.4932 in Eq. 3.27. This inconvenience can

be accommodated by using the following symmetry relations (1:301).

C(-z) = -C(X)

S(-X) = -S(X)

With Zxn determined, we now proceed to the set of coupled differential equations for

x21 and X31. Eqs. 3.9 and 3.10 form a system that has the form

k = A(t)X + Bu(t) (3.28)
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where A(t) is the same as Eq. 3.12, B is the identity matrix and

u(t) = [ Oi3Xr1 (3.29)
-azO0z 20 - i3XUX2I

This is simply the 0(1) system of equations (cf. Eq. 3.11) with a forcing function

u. This system has a solution of the form

X(t) = 4b(t,o)X(o) + $(t,0) j -'(a)u(a)do! (3.30)

The state transition matrix 4' is defined by Eq. 3.19. The first term of the solution

must be set to zero since the initial conditions were matched in the 0(1) system of

equations. The multiplication of the integrand results in

= [ - X3i3x1 - sin (2f)xzoa x2 + "X3 X0 o - C OS X (3.31)

-X2i3X11 + 2 sin (2f)xioa x 3 - 2X 2a x1o - 2 cos (2f)X2a X1 (

Recall that f = f(t) which is defined by Eq. 3.18 and zi are the initial conditions.

The first and third terms in each row of the integrand will produce secular terms,

but the second and fourth terms will not. Integrating each row of Eq. 3.31 and

multiplying the resulting matrix by 0 yields the following results (secular terms are

over-bracketed). The terms ak and bk; k = 1,2,3,4 are located in Appendix A.

Further, the terms X2 and z3 are defined as X2 (0) and x3(0) respectively.

"1 1
X21= Q x10tx 3 cos (f)-• - a i3X3(x• -_X2)cos(f)

1 •1"
+ .a i3X3(X -_) cos (f) cos 2f + 3 C X10tX2 sin (f)

1 1

-- 4-•a i 3 X2 (3 -2 4)sin (f) - -a i 3 X2 (X -- ) cos (2f) sin (f)
4g 4g

+ SL al.i+c [ Ia2
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+ a3 +C ir(k+gt)] -a4

2 2g

X31 a "11X CO 1- 3X(3
-~t = a-•o txx 2 cos (f) -C-O i3 x 2(f• -- C)Ocos(f)

+ 'a-49 i3X2(X3- X) cos(f)cos(2f) + ýa tX10X3 sin (f)
1 1 iz(2z)o(fsnf

- 4-a i3x3(z4 - x2) sin (f) + •-a 9 3 x o cs(! i f
4g 2 34g2 3

+ S k1/- ] b + C [kV9/ ] *b2

+ S V2/-7-r(k+ t)] Wb +/ V-7r (k + t)]b
2J 2

-a i3zX23 cos (f )sin (2f) - -a i3X2X3 sin (f)sin (2f) (3.33)g 29g

Notice that there are no secular terms in the x~l solui•on while they do appear in

the X21 and X31 solutions.

3.1 Straightforward Expansion Results

Because we know that secular terms are present in the solution, we test the

solution on an oblate gyrostat to avoid any problems with instantaneous separa-

trix crossings. Figures 3.2 through 3.5 depict the validity of this solution with

the numerical integration of the equations of motion. The numerical integration

is done using a 4 th order Runge-Kutta subroutine in the computer program Mat-

lab 4-.Oa by the Mathworks Inc. (10). The initial conditions will always be written

at the top of the graph as the "state vector." The state vector is interpreted as

[x1(0); x2(0); x3(0); p(0)]. Further, the x axis is represented as p and is essentially a
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time axis from the beginning to the end of spinup. As can be seen, the solution for

the x, component of angular momentum is very good. However, as the amount of

time required for spinup increases with smaller values of g, the approximate solution

begins to get out of phase with the numerical solution (see Figure 3.3). The x2

component of angular momentum captures the increasing frequency of the spinup

maneuver but, as g decreases the secular terms become dominant and invalidate the

solution. Figure 3.6 and 3.7 depict the maximum error seen throughout spinup for

different tf i,,. or g values. The x2 and x3 components of angular momentum show a

large divergence in error as the spinup times increases. As a result, this approximate

solution is invalid for g < 0.1. The x, component of angular momentum displays

very little error as the spinup time is increased. This is due to the fact that there are

no secular terms in the x, solution. It is interesting to note that the x, approximate

solution does capture the decreasing amnplitude as spinup time increases. The error

seen in Figure 3.6 is due to the out of phase condition that develops. However, be-

cause the scale of the x, component is so small, (i.e. increments as small as 0.0005),

the error would still be less then one percent even if the approximate solution were

completely out of phase with the numerical solution. For smaller values of g (for

example g = 0.001), the approximate solution does get completely out of phase

with the numerical solution about half way through the spinup maneuver. However,

when # -- 1, the approximate solution is back in phase with the numerical solution.

Further, the amplitude error is minimal throughout spinup. With such small error

in the x, component of angular momentum, the cone angle described by Eq. 2.23

is useful at any time during the spinup maneuver. Note that the example in this

analysis began spinup relatively close to the oblate equilibrium point located at the

north pole of the momentum sphere. The region of validity of the x, approximate

solution will be explored further in Chapter 4.
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Figure 3.2. Straightforward expansion method approximate solution of the x, com-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions x, = 0.9X2 = X3= 0.30822 and e =0.01; g = 0.1.
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...o m . . . . . ..............................

j NuMWkexc 8ol Approx ao....

O0.2 0!4 0.6 0.8
mu

Figure 3.3. Straightforward expansion method approximate solution of the x, com-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions x, = 0.9;2 =X3 =0.30822 and c = 0.01; g = 0.01.
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0.2 0.4 0!6 0'.8

Figure 3.4. Straightforward expansion method approximate solution of the X2 COM-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions x, = 0.9;2 = X3= 0.30822 and e = 0.01; g =0.1.

state vectoo (.9;300=2;30822;01

0.4
0 bae.3p- U.;1.A (p.1.1i

.0.1 .. ..... . . ... .

-0 . ..2 .. ........ ..............

-0.3 ... ........ 
... .. ....-OA ..... ........ ... .... . ... ..

0.1Nufl Sl_

0 0.2 0.4 0.6 0.81
mu

Figure 3.5. Straightforward expansion method approximate solution of the X2 Com-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions x, = 0.942 = X 3 = 0.30822 and e = 0.01; g = 0.01.
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Figure 3.7. Maximum error detected in the x2, component of angular momentum a
asa function of tfinal (or g) for an oblate gyrostat using the straight-owr
fradexpansion method.
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3.2 Conclusions

The analysis thus far has demonstrated that the straightforward expansion

method provides reasonable results for the small class of oblate gyrostats that have

a near axisymmetric configuration with a very large torque value. However, the

secular terms and the length of the equations in the solution both contribute to

its general failure. The approach did point out the areas with which the solution

needs to address itself. The equations of motion, when numerically integrated, will

produce solutions which have time varying frequency and amplitude. The method

of multiple scales is ideally suited to handle these problems and is the subject of the

next chapter.
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IV. The Method of Multiple Scales

As seen in Chapter 3 and specifically Figure 3.7, the straightforward expansion

method only produces acceptable results for times (or equivalently torque values)

that are very small (large) compared to 1/c. This is an inherent problem with series

expansions or perturbation solutions of nonlinear differential equations. The problem

arises due to the fact that 0(e) and higher terms produced by the straightforward

expansion method are proportional to the independent variable, t. These terms,

commonly referred to as secular terms, destroy the fundamental assumption of a

perturbation solution. Specifically, in a series expansion, each successive power of

the small parameter, e, has decreasing importance in the series solution. By being

proportional to the independent variable, these terms rapidly become large in relation

to the 0(1) term (11:24-25). This result is also known as a nonuniform expansion.

The Method of Multiple Scales was developed to overcome this deficiency.

Eq. 3.32 contains the 0(e) term for the x2 component of angular momentum in the

straightforward expansion solution. The functional dependence of x2 on t and e can

also be written as

x2(t;e) = x 2(t, et, 2t,... ;e) (4.1)

Or

x2(t; C) = i 2(t 0 , t1, t2,1- ; 6) (4.2)

where the tn are defined as

to = t, tl = Ct, t2 = e2t (4.3)

Note that the tn are different time scales. If e = , then variations on to could be

observed on the second hand of a watch. Variations on t1 could be observed on the

minute hand. Further, variations on t2 could be observed on the hour hand and so

on (12:122-123). As a result, the functional dependence of x2 on a single independent
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variable, t, changes to dependence on to, ti, t2,.... To incorporate this dependence

in the solution we use the differential operator

d 8 a 2_a
7=- + C- 5i + C -+i " (4.4)

The assumed series solution for xi is now

xi = Zio(to, t1, t2,...) + Czi(tO, ti, t2, ... ) + 62 i2(tO, t, t2, 23...) - O(e); i = 1,2, 3 (4.5)

If these relations are substituted into a differential equation and powers of C collected,

they result in a series of partial differential equations as functions of the time scales

t,,. Solutions to these PDE's involve the determination of functions which cause

secular terms to vanish (2:120-123).

We begin the multiple scales solution approach with the four first order differ-

ential equations that describe the system.

xl = (i 2 - i3 )x2x3  (4.6)

i2 = (isx1 - A)x 3  (4.7)

S= -(i2xI - p,)x 2  (4.8)

S= g (4.9)

This system is subject to the following initial conditions

xi(0)
_x2(O)

x(O) 2 (4.10)
X3(0)

A (0)

Note that xi refers to the total component of angular momentum while xii refers to

the terms which make up the solution for xi. The small parameter about which we
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want to perturb the system is the difference in the transverse inertias

i2 - i3 = a C (4.11)

where a is 0(1). We only use two time scales and seek bounded solutions of the

form

x,(to, t1;e) = Xio(to, ti) + ezxi(to, ti) + C2 X4(to, t) + O(e3); i = 1,2,3 (4.12)

The fast time "t0 " is defined as t while the slow time "t," is defined as e t. In order

to incorporate the different time scales, the following differential operator is used.

d 0 
(4.13)

dt = at-- 1 +4C13i

In order to insure that angular momentum is conserved, we impose the constraint

IIxI12 = 1,V t > 0 (4.14)

Expanding this relation using Eq. 4.12 we see

1 = IIx(to, t1 ; 6)112 = X.X= IIxo12 + 2eXo . x, + 2 [l11x1I' + 2xo x,] + X2 (4.15)

This imposes an orthogonality condition on the O(e) terms. Plugging Eqs. 4.11, 4.12

and 4.13 into Eqs. 4.6 through 4.8 and collecting terms of O(e) yields the following

systems of equations.

axO
O(1): o - = 0 (4.16)

ato
9 - (i3 XlO- U)T30  (4.17)

ato

4- -(i3Xo- A)X2o (4.18)
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(4.19)

Subject to

xzo(O, O) - xi(O), i = 1, 2, 3

8xxoll3 = 11v t > 0

0(e): o = oo- a t---z30 - (4.2)
8x 21  (XO)3_ (4.20)

C X1= (i3 XIO - 1A)x31 + i3XZ1130 -~a (4.21)
(9X31 - z.8X3

o -(iX1O IA)X32 - i3Z1X20 a ZOfXIo - -l- (4.22)

Subject to

xil(0,0) =0, i = 1,2,3

Xo'X, = 0, Vt>0

Starting with the 0(1) system of equations, the xZo term has the solution

x1o(to, ti) = Al(t 1 ) (4.23)

where A1(t 1) is the "constant" of integration. The term "constant" is used to indicate

that although the term has time dependance in t1 , it is constant with respect to to.

In order to determine the dependence of t1 on x1o, we must solve the next higher

order of the system of equations, O(e). The z2o and x 3o terms are coupled partial

differential equations. Note that A is only a function of the fast time to. This can be

seen by noting that A reflects the energy that is being put into the system. It is the

result of a simple ordinary differential equation and, as a result, has no dependence
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on the slow time. Making use of Eq. 4.23, the system of equations can be written as

ax2o
ait20  = [i3Ai(ti) - jA(to)]x o(to, tj) (4.24)
a&0at0  = -- [iA,(At) - p(to)] x2o(to, t1 ) (4.25)Oato

This system can be represented as

19 Xo = B(to, t)Xo(to, ti) (4.26)

Xj = [X 2 ]j (4.27)

and the B matrix is

B = [ 0 [iA(t3 ) -j(to)]] (4.28)
-[i3A(ti) - IA(to)] 0

This matrix is very similar to the matrix developed in Chapter 3 using the straight-

forward expansion method. It still satisfies the property of commutativity and so we

make use of the following relation (7:600)

If B(t1)B(t2) = B(t2)B(t i ); then 4(t,r) = expI B(a)da (4.29)

and the system of equations has the solution

X = 4(t,O)Xo(0,ti) (4.30)

The matrix 4(t, 0) is termed the state transition matrix and Xo are the constants

(with respect to to) of integration of the system. The integration of the B matrix is

easily done
tot Agrq o-iAt) ~ t(9a + I"o - i3A(ti)) d -0 + (Po - i3A(t1 )) to (4.31)
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To simplify the equations we make the following definitions.

k = po - i3A,(ti) (4.32)

f(to) = + kto (4.33)
2

As a result, the state transition matrix is again

(t 0) = exp [o0 -f(to) cos f(to) - sin f(to) (434)
( f(to) 0 sin f(to) cos f(to) 4

Finally, the solution to the set of coupled PDE's (Eqs. 4.17 and 4.18) is

x2o(to,t 1 ) = A 2(t 1)cosf(to) - A3(tI)sinf(to) (4.35)

x3o(to, ti) = A2(tI)sinf(t0 ) + A3(t)cosYf(tO) (4.36)

We now proceed to solve the O(e) system of equations to find the tj dependence

in xio. The O(e) equations are listed here again for convenience.

t1o = O 0 X2oX3 o (4.37)
at0  at1
ax21  = (i3Io - A)X31 + i. 3•o- aX20  (4.38)
at0  a&I
ax31  = -(i3Xlo - ,)4X - i:3X1 X20 - XlOX20 - o (4.39)
at0  at,

Noting Eq. 4.23, the x1l term can be written

4X__ - -A'(ti)+a xato

[A2(tl) cos f(to) - A3(tI) sin f(to)] x

[A2(tl) sin f(to) + A3(tl) cosf(to)] (4.40)
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It is now implied that the constants of integration Aj, i = 1, 2,3 are functions of the

slow time t1 . Further, the ' now represents the derivative with respect to the slow

time (ie ()' = ()/&tt). Integrating this equation yields

Xu1(to, ti)= / {-A' + a z2o3o}dto = -A'to I + (S [V'i7 b+ to)]6

+ C + t) 2 I 1(i

(4.41)

b, = cl A' Cos V _ Al 2o COS + 2A2 A3 sink

br -A 2 sink + A sin -k + 2A 2A3 co
yo\g g g

The Fresnel Sine (S) and Fresnel Cosine (C) functions are as defined in Chapter

3. As can be seen, A, is the only secular term in the solution. In order for x1l to

be bounded as t --+ oo, we must have A!,(tL) = 0. Further, application of initial

conditions for the 0(1) system results in

Ai(tL) = constant = xj(0) (4.42)

We now "redefine" Eqs. 4.23 and 4.32.

zlo(to,ht) = zi(O) (4.43)

k = O-- i 3z10 (4.44)
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The dependence of the new "constant" of integration, A11(tj), cannot be determined

unless we go to the O(e2) system of equations. Finally,

X1(to, ti) = $ v(k+ t) g t)

- [k ] b2 -S [k'fF] b1 +A 11 (ti) (4.45)

The dependence of Zii on the fast time is shown in the Fresnel Sine/Cosine terms

while its slow time dependence appears in the constants of integration contained in

b, and b2.

We now have a set of coupled PDE's in the O(e) system of equations which

must be solved. The equations are repeated here

at9X2 = (i3XIO - A)X 31 + i3Xi 3 o - I-"a-0

aX-- = -(i3Xr, - Is)X 21 - i3X 1 X 20 - a XIrX20 - OX30

where

- A'(tj)cosf(to) - A'(t1)sinf(to)
atl
aX3 0 - A'(t 1 ) sin f(to) + A'(t1) cos f(to)

This system of equations can be written as

aoX, = B(to)X 1 (to,tj) + u(tO,tI) (4.46)

Xj = X2j (4.47)
x3j
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Notice that at this point, the B matrix is only a function of the fast time.

(to) 0 [i 3 (0) - j(tO)] ] (4.48)e~o)= [6i~(0) - P(]0

and

Si3XIIX3o0 - A' cosn(f(to)) + A'sins(f(to))
u(t0, tO2) (4.49)

-itoxt 1) = o - A ~oX - A sin (f(t o )) - A'3 cos (f(to) (

This system has a solution of the form

X(to'ti) = 0(tO)X(O,0) + (t,0) fJ f-'(T)u(T)dr + [A 21(t)) (4.50)
0 [A 31 (h) I

The initial conditions for this system will be implemented after we complete the

derivation of the O(c) terms. As a result, we are only interested in the particular

solution. A21 and A3 1 are the constants of integration resulting from the integra-

tion of the system of PDE's. Because the B matrix is only dependent on to, the

state transition matrix is exactly the same as that in the 0(1) system of equations

(Eq. 4.34). Multiplication of the inverse of the state transition matrix 4-1 and the

forcing function matrix u yields the following

-A' + A 3 i 3X11 - i sin (2f(to))xloa A2 + 1A 3a X10-

, = cos (2f(to))A3C( X o

-A'3 - a 2i 3 x11 + ½ sin (2f(to))xloa A 3 - !A2c X10-

cos (2f (to))A 2a x1o
(4.51)

In order to achieve a uniform expansion, we require that the coefficients of the secular

terms must go to zero. The first, second and fourth terms in each row of the matrix,

when integrated, will produce secular terms. The secular terms form the following
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system of PDE's

-A' = -(a X10 + i3zXl)A 3  (4.52)

-A' 3 = ( x1o + i3xn)A2  (4.53)

This system allows us to determine the dependence of A2 and A3 on the slow time,

tj, however, the system is extremely complex. First, xz (Eq. 4.45) contains bi and

62 which are functions of A2 and A3. This makes the system of equations nonlinear.

Second, X11 also contains the An(tj) term which is unknown at this time and can

only be determined by solving the O(e 2) system of equations. While the prospect

of deriving an approximate solution at this point appears grim, reasonable results

can still be obtained. Note that the system of equations for A2 and A3 could easily

be solved if the xn term were a constant. In order to make this approximation, we

must ignore all time dependence in xi so that it can be decoupled from the X21

and X3 1 system of equations. This approximation requires that the variables A2 and

A3 given in b, and b2 be given the values of the initial conditions x2 (0) and z3 (0)

respectively. Further, since the time dependence in xz is ignored, the All term is

also dropped. Figure 4.1 depicts xz1 as a function of time for an oblate gyrostat with

a 1 percent difference in transverse inertias and an initial state [0.7, 0.4, 0.59161, 0].

The two curves represent the gyrostat with two different non-dimensional torque

values of 0.01 and 0.1. As can be seen, the xz function oscillates and asymptotically

approaches a constant value as t -+ oo. By making use of the fact that both the

Fresnel Sine and Fresnel Cosine approach ½ as t --+ cc, this value can be determined

as

Zapprox, = i(C, + C2) S C - 6 k 1 c2  (4.54)

where now

cl = b(0)=a T(X2(O)2COS _-X3(O)2COS - + 2X2 (O)X 3 (0) sin9
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Stat Vector [.7:.4;.5161 0.)

0 .8 .................. ".................... ........................................ ...................

0 .0 ........................................................ ........................................

0 .4 ................... ?.................. <............ ...... ................... ...................
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00.0 - O...

-0 .6 ................. ......... :........... I ................... .. .........................-0 . ................... i .................. .. ............................
24060 8010

Figure 4.1. x~l Variation for an oblate gyrostat with initial conditions x, = 0.7,42 =

0.4, X3 = 0.59161 and e = 0.01; g = 0.01.

C2 -- b2(0)- =-X2(0)2 s -in-k+X3(0)2 sin-- + 2X 2 (0)X3(0)COS

Using this approximation for xll produces some excellent results. Returning to the

coupled set of PDE's given by Eqs. 4.52 and 4.53, we have now reduced them to

a constant coefficient coupled set of PDE's based on the approximation of no slow

time dependence in xj. This system of equations now yields the following result.

A2(tI) = A2 cos (Ltl) + A3 sin (Lt) (4.55)

A 3 (tl) = -A 2 sin(Ltl) + A3 cos(Lti) (4.56)

where

L = (•a XIo + i3XIa,,.oz) (4.57)
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These solutions for A2 and A3 as functions of tj must now be applied to the 0(1)

system of equations. Therefore Eqs. 4.35 and 4.36 now become

x20(to) - [A2 cos (Le to) + A3 sin (Le to)] cos f(to)

- [-A 2 sin(Le to) + A3 cos(Le to)] sin f(to)

x3o(to) = [A2 cos(Le to) + A3 sin(Le to)] sin f(to)

+ [-A 2 sin (Le to) + A3cos(Le to)]cosf(to)

Further, with these solutions in hand, the secular terms of the '-'u(to, t1 ) matrix

(Eq. 4.51) may now be ignored. The integration from 0 to t followed by the multi-

plication of the state transition matrix results in

2 1 k 2 t

X21  -a 7 fxio{A 3 COS(K+ kt + C [kVf

- A3cos(9 +kt+ 2)vj ]

+ A2 CO [k'I~ si (+kt+ tS[k'

+kA 2 [0~k9 )] Si [2r( j +k+t 2)]

+ ASC [k ] sin I\+kt +

+A 3 S [ k ] sin +(kt + (
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and

1 -C( X/0lo A2 cos(- + kt+ )C [/-],ý31 --"8 1 92)C[•

+ ACcos( +kt++ 2 )CS[K>9

Ik2  gt2 \

+ A3S I v sin (-+ kt +/ )
+-A 2 S J g sin (9 +kt+--)+ A~ i (459

The total solution can now be formed.

x1 = X10 + C X1 + O(e2) (4.60)

In expanded form this is

X1 I() +6 S 2___r__+____cl+ [V2/7r(k +gt) C

- C2 - S xi I C, += ((+) (4.61)
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The x2 approximate solution is as follows.

X2 = X2o + + X (c2 ) (4.62)

In a slightly expanded form this is

X2 = [A2 coS ((2a 1X + i3zllapproz)C t) + A3 sin (2a z 1 + i3Xnuapprox)C t)] X

COS (et+kt)

+ [A2 sin((az 1 + i3z ,,ox)Ct) - A3 9sin((IX + i3XIIamox)e t)] x

sin (e -+kt)+I X21 + 0(_2) (4.63)

The x3 approximate solution is as follows.

X3 = X30 + 6 X31 + 0(C2 ) (4.64)

X3 = [A2 cos ((2a X1 + i3z11 W.10,)C t)+ A3 sin (2a X1 + i3X1,,aMo-,) t)] X

sin -g2+ kt
(2 )

+ [-A 2sin ((t X r i3 Xinpp.oz=)c t + A3 sin ((a X1 + i3Xslppo,)6 t)]×

COS (o + kt X +• X31 + 0(e2) (4.65)

The solutions used for X21 and X31 are not exact in that we have not solved for

A21 (t,) and A 31(t1). This would involve solving the 0(c2) system of equations which

requires solving the following integrals analytically or approximately.

S(o) cosado

o C (ur) sin o'd o
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Being unable to accomplish this, we assume this error to be small and proceed.

To determine A2 and A3, we apply the initial conditions to x2 and x3.

x2 (0,0) = x2 (0) = A2  (4.66)

x3(0,0) = x3 (0) = A3  (4.67)

Earlier we noted that for the 0(1) system, the norm of the components of angular

momentum must equal one to satisfy the conservation of angular momentum. The

equations developed for z1o, X20, and x3o do satisfy this condition. Since we have

found xZo to be a constant, however, we note that the sum of squares of the transverse

angular momentum components must also be constant for t > 0. This is essentially

the same result that was found by Sen and Bainum (13). There have been no

limitations on geometry to this point and so this result is valid for near axisymmetric

oblate or prolate configurations.

4.1 Method of Multiple Scales Results

We will investigate the validity of this approximate solution for the three types

of spinup problems described in Chapter 2. Recalling the discussion in section 2.4,

we note that there should not be any complications associated with instantaneous

separatrix crossings for an oblate gyrostat. As seen in Figure 2.3, the instantaneous

separatrices associated with unstable equilibria migrate to the south pole of the

momentum sphere as p increases. An oblate trajectory, however, would begin and

stay in the northern hemisphere throughout spinup.

Dual-spin gyrostat dynamics become interesting when the initial condition

starts in the southern hemisphere of the momentum sphere. A perfectly modelled

system would be able to accommodate the non-linearity associated with migration of

the instantaneous separatriccs in the southern hemisphere. Recall, however, that by

choosing the difference in transverse inertias to be the small parameter, the system
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of equations that describe the spinup are transformed from a non-linear system to a

sequence of linear systems. As a result, the approximate solution does not contain

any of the separatrices associated with the non-linear system. Since both prolate

spinup and transverse spinup have trajectories that interact with and are influenced

by instantaneous separatrices, we expect to see some degradation in the approximate

solution for these spinup problems.

4.1.1 Oblate Gyrostats. Figures 4.2 through 4.7 compare the approximate

solution versus the solution obtained by a 4 "h order Runge-Kutta numerical integra-

tion scheme. The gyrostat modelled is oblate with a 1 percent difference in transverse

inertias and an initial state [0.7; 0.4; 0.59161; 0]. The non-dimensional torque value

is g = 0.01. Again, is is the time scale for the beginning of spinup to the end of

spinup. Because the scale of the plots is large, the relative error between each graph

is also presented. The relative error is given by the following equation.

Percent Relative Error = IXinumerical - X',approximatel1 ; i=1,2,3 (4.68)
xi(0)

The assumption of no slow time dependence in the x, component of angular

momentum allowed the derivation of an analytic solution for the terms of the approx-

imate solution. Thus, the result for the x, component is identical to that developed

in the straightforward expansion method. Recalling the results from Chapter 3, even

though this solution does go in and out of phase with the numerical solution, the

error is less than one percent due to the small magnitude of the phase error compared

to the initial value in the x, component. Further, we can now see that the phase

error is caused by ignoring the slow time dependence in this component of angular

momentum. Figures 4.4 through 4.7 depict the x2 and x3 components of angular

momentum. Qualitative results are excellent. Although there are two curves in Fig-

ures 4.4 and 4.6, only one is visible. Notice, however, the large error at j_ 0.05 in
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Figure 4.2. Numerical vs approximate solution of the x, component of angular mo-
mentum of an oblate gyrostat with initial conditions z, = 0.7, X2 =0.4,

X3 =0.59161 and e= g =0.01.
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Figure 4.3. Percent relative error of the x, component of angular momentum of an
oblate gyrostat with initial conditions x, = 0.7, X2 =0.4, X3 = 0.59161
and e g 0.01.
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Figure 4.4. Numerical vs approximate solution of the X2 component of angular mo-
mentum of an oblate gyrostat with initial conditions x, = 0.7, X 2 =0.4,

X3 =0.59161 and e-=g-=0.01.
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Figure 4.5. Percent relative error of the X2 component of angular momentum of an
oblate gyrostat with initial conditions x, = 0.7, X2 = 0.4, X3 = 0.59161
and e = g = 0.01.
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Figure 4.7. Percent relative error of the x.3 component of angular momentum of an
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and c = g = 0.01.
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Figures 4.5 and 4.7 during the early portion of the spinup. This "spike" is caused by

the assumption of a constant value for the xZi function in the approximate solution.

Further, the error induced by the assumption manifests itself as phase error. To show

this, observe Figure 4.8 which depicts the amplitude error associated with the spinup

of this gyrostat. We see that the amplitude error is very small in the early portion

of the spinup maneuver. Recalling the derivation of the approximate solution, the

approximation made for xi impacted the solution for the slow time variation of the

transverse components of angular momentum. The solution to Eqs. 4.52 and 4.53 are

themselves sines and cosines and are the means by which the approximate solution

captures the slowly varying frequency in the transverse components of the system.

The amount of initial phase error is related to how far the gyrostat starts from the

oblate equilibrium point. Figure 4.9 depicts the xal function for two different oblate

trajectories. One trajectory begins very close to the oblate equilibrium point while

the other begins very far away. As seen, the approximation of the xll function very

early in the spinup is not as accurate as at the end of the spinup. The approximation

gets worse as the initial conditions get further away from the equilibrium point. The

same phenomena occurs for different values of g (see Figure 4.1). A smaller non-

dimensional torque value results in a larger initial approximation error. Since this

error is incorporated as phase error in the x2 and x3 components of the approximate

solution, we can expect higher initial phase error in the approximate solution for

oblate gyrostats that begin spinup further away from the oblate equilibrium point

and/or are torqued by smaller values of g.

These results are for one particular gyrostat which begins spinup at one initial

condition. In order to determine the envelope of the solution for an oblate gyrostat,

we look at three different variables in the equations; initial conditions, torque (g)

values and differences in transverse inertias (e).

4.1.1.1 Initial Conditions. Figure 4.10 depicts the maximum error

detected throughout spin up for a gyrostat with e = g = 0.01 starting at various
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Figure 4.10. Maximum error detected as a function of initial conditions for an

oblate gyrostat.

initial conditions (note that the maximum error may have occurred at different

times for each component). The y axis is the x, initial condition with x2 = x3 =

v(1- )/2 being the transverse initial conditions. Figure 4.10 shows less than

1 percent error in all three axes for gyrostats that start spinup from a point half

way down the north (oblate) half of the momentum sphere. As the initial condition

progresses further away from the oblate equilibrium point, however, the approximate

solution rapidly begins to diverge. This is caused by the large phase error induced

early in the spinup maneuver by assuming a constant value for the xZU function.

Since the primary interest in the spinup maneuver is the angular momentum at the

end of spinup, Figure 4.11 depicts the maximum error detected during the last 10

percent of the spinup maneuver. As seen, with the initial phase error absent, the

approximate solution is valid to within one percent for the vast majority of initial

conditions.
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Figure 4.11. Maximum error detected in the last 10 percent of spinup as a function
of initial conditions for an oblate gyrostat.

4.1.1.2 Torque Values. The torque value ij directly related to the

validity of the solution through Eq. 2.25. Because the approximate solution has

only incorporated two time scales, the solution is only valid to t = O(C-'). The

reason is that for t much greater then O(c- 1 ), the tj variable ceases to be an 0(1)

quantity, and as a result, the solution breaks down (11:228-230). This fact limits the

torque values to those which are larger than the asymmetry in the gyrostat. The

unfortunate result is that this solution is unable to model accurately the spinup of

gyrostats with relatively large asymmetry and small spinup t1.rque. This is not to

say, however, that we cannot get good qualitative results. Figures 4.12 and 4.13

illustrate this point. Here we model the same gyrostat as in Figures 4.2 through

4.7, but reduce the torque value to g = 0.001. As can be seen, there is excellent

qualitative accuracy, but a closeup reveals a slight phase error this far into spinup

(see Figure 4.14). Figure 4.15 illustrates the idea graphically.

A second quality associated with the range of validity is the error of the ap-

proximate solution. In general, multiple scalrs solutions carried out to 0(c) have an
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Figure 4.12. Numerical vs approximate solution of the x2 component of angular
momentum of an oblate gyrostat with initial conditions x, = 0.7,
X2 = 0.4, X3 = 0.59161 and e = 0.01;g = 0.001.

error of 0(1) when t = O(e-2). This is because the constants of integration which

develop in the 0(1) terms are solved for to 0(c) (cf Eqs. 4.55 and 4.56). These

constants of integration are of 0(1) when t = O(e- 2) which fixes the overall error

of the solution. Such an orderly generalization cannot be applied to the approxi-

mate solution developed in this thesis. The approximation made for the Zln function

will cause varying degrees of error as spinup time increases. Further, we employ an

approximation for the Fresnel Sine/Cosine functions which have their own order of

error.

4.1.1.3 Difference in Transverse Inertias. Perturbation solutions

assume that the small parameter, e, is "small." While an exact definition of "small"

cannot be made, the validity of the solution can be demonstrated for different "small"

values. Figure 4.16 plots the maximum error detected throughout spinup for an

oblate gyrostat with different values of -. This figure shows that we can expect results

with less than 2.4 percent error for an oblate gyrostat that has a 5 percent difference
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Figure 4.13. Numerical vs approximate solution of the X3 component of angular
momentum of an oblate gyrostat with initial conditions x, 0.7,

X2= 0.4, X3 = 0.59161 and c = 0.01; g = 0.001.
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Figure 4.14. Phase error that develops for an oblate gyrostat with g << c.
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in transverse inertias and approximately 1 percent error for a gyrostat that has a

2 percent difference in transverse inertias. The data in this figure must be viewed

carefully, however, since this gyrostat has started with an initial condition fairly close

to the oblate equilibrium point. We know the error values will increase as the initial

conditions move further from the oblate equilibrium point. In contrast, recall that

the maximum error associated with oblate gyrostats starting spinup further away

from the oblate equilibrium point is caused by the phase error induced early in the

spinup maneuver. The error is considerably less when the comparisons are confined

to the last 10 percent of the spinup maneuver.

4.1.1.4 Cone Angle Approximations. As discussed in Chapter 2,

the cone (or nutation) angle is the angle formed by the total angular momentum

vector and the symmetry axis of the gyrostat. The equation for this angle is given

by Eq. 2.23. Throughout the analysis for oblate gyrostats, the maximum error

associated with the x, component of angular momentum has been less then one
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Figure 4.16. Maximum error detected as a function of C for an oblate gyrostat with
initial conditions x, = 0.7,x 2 = 0.4, Xz = 0.59161 ;g = e.

percent. From Figure 4.10, this maximum error occurred for an oblate gyrostat

with a one percent difference in transverse inertias but starting just north of the

equator of the momentum sphere. From Figure 4.16, this maximum error occurred

for an oblate gyrostat starting fairly close to the oblate equilibrium point but with

a ten percent difference in transverse inertias. The essential result, however, is

that Eq. 4.61 is a reasonable approximation for near axisymmetric oblate gyrostats

which begin the spinup maneuver with initial conditions in the northern half of the

momentum sphere. Further, this equation can be used to determine the cone angle

at any time during the spinup maneuver.

4.1.2 Prolate Gyrostats. As mentioned earlier, our selection of the differ-

ence in transverse inertias allows us to solve linear systems of equations for the terms

of the approximate solution. Because the systems of equations are linear, our ap-

proximate solution does not incorporate any of the separatrices associated with the

original nonlinear governing equations. The result is that a phase error will develop
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as the instantaneous separatrices begin to migrate toward the prolate equilibrium

point.

To see this, recall that in a g = 0 system, the separatrix separates different

kinds of motion. In Figure 4.17, we present a cartoon of this concept in the x2, X3

plane. It is clear that the phase of the trajectory inside the separatrix is different than

that on the outside. As p increases, the prolate equilibrium point will go through two

bifurcations as discussed in Chapter 2, and the phase of the trajectories on either side

of the separatrix will change. The net result is that the instantaneous separatrices

in the nonlinear system influence the phase of the trajectories on either side of the

separatrix. Since the approximate solution does not contain any separatrices to

influence the trajectories, we expect a phase error to develop. We also expect the

magnitude of the phase error to be larger when the separatrix is near the equator of

the momentum sphere since the trajectory paths are longer.

Unfortunately, the phase error induced by the instantaneous separatrices is

not the only phase error in the approximate solution. Just as for an oblate gyrostat,

the xU approximation induces an additional phase error. The combination of these

errors greatly hinders the usefulness of this approximate solution for prolate spinup.

Figures 4.18 through 4.20 illustrate the spinup of a prolate gyrostat. We can

see that the approximate solution begins to get out of phase near p = 0.1. Un-

fortunately, because the approximate solution begins with a relatively large error,

which is compounded by an additional phase error from its inability to model the

instantaneous separatrices, the remainder of the solution is flawed. Notice that the

gyrostat begins spinup fairly close to the prolate equilibrium point (P,). Because

the xzl approximation gets worse as the initial conditions move further from P, we

do not expect any results better than those shown.

As discussed in Section 2.4, the last bifurcation associated with the instanta-

neous separatrices occurs at p equal to the larger of li21 or li 31. After this point, the

momentum sphere contains only two equilibrium points, both of which are centers.
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Figure 4.17. Cartoon of different trajectory paths in a g = 0 nonlinear system.
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Figure 4.18. Numerical vs approximate solution of the x, component of angular
momentum of a prolate gyrostat with initial conditions x, 0.9, X2
0.30822, x3 =0.30822 and e = g = 0.01.
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Figure 4.19. Numerical vs approximate solution of the X2 component of angular
momentum of a prolate, gyrostat with initial conditions x, = 0.9, X2 =

0.30822, X3 = 0.30822 and c = g = 0.01.
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Because there are no more instantaneous separatrices to influence the trajectories,

the approximate solution should well approximate the system again after the last

bifurcation occurs. Figures 4.21 through 4.23 illustrate this idea. These graphs

represent the error between the two solutions. We used the numerical results at

p = 0.505 as the initial conditions for the last portion of the spinup. These graphs

also clearly show the early phase error associated with the xl• approximation and

the instantaneous separatrices. The small error seen during the last portion of the

spinup is on the same order as that seen during oblate spinup. Recognize that if we

use the numerical results anywhere from when the solution starts to get out of phase

to p = the larger of 1i21 or 1ia[ as initial conditions, the approximate solution will not

be as accurate. The reason is that even though the approximate solution is starting

from a correct initial condition, it does not have the correct frequency information

until the effects of the instantaneous separatrices are eliminated.

4.1.3 Transverse Spinup. Transverse spinup should experience the same

problems associated with prolate spinup except the errors will be more pronounced.

Recall that in this case, the trajectory starts near a stable flat spin equilibrium point.

Further, unless the torque value is extremely small, the trajectory will have too much

energy and cross an instantaneous separatrix almost immediately. This will result

in a large phase error between the approximate and numerical solutions. The error

is the composite of the zx1 approximation, which is the worst at small j, and the

magnitude of the phase error which is largest near the equator. Figures 4.24 through

4.26 compare the approximate and numerical solutions for a prolate gyrostat starting

at the exact transverse equilibrium point. Figures 4.27 through 4.29 show the same

gyrostat starting spinup just offset from the equilibrium point. In each case, the

instantaneous separatrix crossing occurs almost immediately. This is evidenced by

the fact that the x2 and x3 components immediately begin to oscillate between -1

and 1.
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Figure 4.20. Numerical vs, approximate solution of the x3 component of angular
momentum of a prolate gyrostat with initial conditions x, 0.9, X2 =

0.30822, X3 =0.30822 and c = q = 0.01.
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Figure 4.21. Percent relative error in the x, component of angular momentum of
a prolate gyrostat. Initial conditions are matched at p = 0 and IA=

0.505.
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Figure 4.22. Percent relative error in the x2 component of angular momentum of
a prolate gyrostat. Initial conditions are matched at ps 0 and IA=

0.505.
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Figure 4.23. Percent relative error in the X3 component of angular momentum of
a prolate gyrostat. Initial conditions are matched at us = 0 and p=
0.505.
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Figure 4.24. Numerical vs approximate solution of the x, component of angular
momentum of a prolate gyrostat during transverse spinup.

Recall that our solution is only valid for g > c. In order to make use of

this approximate solution, we would need to model extremely near axisymmetric

gyrostats (e = 0.00001) with extremely small torque values. This is not very practical

since, in the limit, it approaches the exact solution for e = g = 0 (i.e. axisymmetric

and nio spinup).

4.2 Summary

The approximate solution developed in this chapter essentially employs the

method of multiple scales. The solutions are not complete in that we are unable

to solve the O(e 2) system of equations to determine the constants of integration in

the O(c) system. Further, in order to derive an analytical expression for the 0(1)

system, we ignore the slow time dependence in the x, component of angular momen-

tum. While this approximation leads to large phase errors in xl, the magnitude of

the error is small compared to the magnitude of the overall component of angular

momentum. The result is an overall small error in the x, component. The benefit
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Figure 4.25. Numerical vs approximate solution of the x2 component of angular
momentum of a prolate gyrostat during transverse spinup.
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Figure 4.26. Numerical vs approximate solution of the X3 component of angular
momentum of a prolate gyrostat during transverse spinup.
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Figure 4.29. Numerical vs approximate solution of the X3 component of angular
momentum of a prolate gyrostat during transverse spinup.

of the approximation is that it allows the analytical development of the transverse

components of angular momentum.

We compared the approximate solution to the three spinup problems discussed

in Chapter 2. For oblate spinup, the approximate solution provides excellent results.

For oblate gyrostats that begin spinup close to the oblate equilibrium point, the error

in all three components of angular momentum are very small. The reason is that the

influence of the instantaneous separatrices are initially small and remain small as the

spinup maneuver continues. As the initial conditions for the gyrostat get close to

the equator of the momentum sphere, the influence of the instantaneous separatrices

are initially felt and result in a large initial phase error. However, as the spinup

maneuver progresses, the instantaneous separatrices migrate further away from the

trajectory and the error values decrease. Additionally, we discussed the validity of

the approximate solution in terms of time and/or torque value. Because we only

use two time scales, the approximate solution is only valid to t = O(c-I). This

implies that the torque must be greater than the c value to achieve quantitatively
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accurate solutions. However, qualitatively accurate solutions are available out to t =

O(c-2). Finally, we determined that oblate gyrostats with a one percent difference

in transverse inertias are well approximated.

For prolate spinup, the approximate solution is hindered by phase errors arising

from the x~l approximation and its inability to account for instantaneous separatri-

ces. This results in an "instantaneous separatrix window" in which the approximate

solution is not able to compensate for the frequency change as much as the nonlinear

system. The "window" closes after the last bifurcation occurs at the south pole of

the momentum sphere. Numerical results for the components of angular momentum

at any time after the last bifurcation are valid initial conditions to approximate the

remainder of the spinup.

The approximate solution is not well suited to model transverse spinup. The

torque values required foi accurate use of the approximate solution are so small, that

the solution is rendered impractical.
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V. Cylindrical Coordinates

The approximate solution derived in Chapter 4 provides excellent results for

oblate gyrostats with initial conditions that start in the upper half of the momentum

sphere. The approximate solution begins to breakdown, however, due to the phase

error introduced by assuming a constant value of the xl function. This is most

clearly demonstrated in Figure 4.10. The maximum error that begins to develop

in the transverse components of angular momentum is due to this approximation.

We have noted that this error occurs early in the spinup maneuver where the xUl

approximation is least valid. The idea of tl.is chapter is to derive an approximate

solution that does not suffer this deficiency.

A different approximate solution was developed by Lt Col William P. Baker,

Associate Professor of Mathematics, Air Force Institute of Technology and is included

here for evaluation and completeness. Lt Col Baker observed that the transverse an-

gular momentum components are characterized by constant amplitude but varying

frequency. His idea was to transform the system of equations to cylindrical coor-

dinates and then use the method of multiple scales to derive another approximate

solution.

To develop the solution we proceed as follows. Eqs. 2.18 through 2.20 with the

substitution of ac = i2 - i3 reduce to

kl = aeX2X3  (5.1)

i2 = (i 3xI - A)x 3  (5.2)

k3 = -(i 3x1 - U)x2 - aexIx2  (5.3)

S= g (5.4)
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Let

x = x(5.5)

x2 = Pcos4, (5.6)

x3 = psinb (5.7)

where p is the amplitude and 4 is the phase angle of the system. The system is

subject to the following initial conditions

x,(0) = x,(O)

p(0) = vX2(0) + x3(0)
0(0) = tan` (X3(0))

tx2(0)/

To get the system of equations into a form from which we can employ a multiple

scales approach, we start with

2 2 2

= tan-1 (x 3/x 2)

The time derivative of these expressions are

pA = X2 i 2 + X316 (5.8)

= -a6x1x 2x 3 = -aCxIp 2 cos d sin € (5.9)1 )e3x2 - i2x3
x/x)2 2i (5 .10)

1+ 1X/X XX2X3(.0

One further manipulation is

p = 1x62 - Ixi2X3 = -(i3XI - t&)p 2 - axp 2 cosXP 4 (5.11)
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Substituting Eqs. 5.6 and 5.7 into Eq. 5.1 and using Eq. 5.9 and 5.11 results in the

following system of equations.

xk = acp cos 0 sin 0 = -P sin 20

p = -aexlp cos 0 sin q = -- xlp sin 20
2

-(i 3xi -P)-~ Txi - -xj cos20

We simplify these equations further by letting

V) 20 (5.12)

•- (5.13)
2

and obtain the following system of equations.

b1 = 6p2 sin (5.14)

= -6xlpsinik (5.15)

= -2(i 3x1 - p) - 2bx, - 26xj costP (5.16)

We seek solutions of the form

Xl(to,t,;b) = XIo(to,t))+,,XIi(to,t 1 )+6 2X 12(to, tl) + O(3) (5.17)

p(to, t1;6) = po(to, it) + 6p1(to, tI) + b2p2 (to, t1 ) + O(63) (5.18)

0(to; 6) = lpo(to) + Slp 1(to) + b24k2(to) + O(b3) (5.19)

Again the fast time "to" is defined as t while the slow time "t," is defined as bt. Note

that we make the initial assumption of no slow time dependence in the phase angle.

This assumption will be discussed in the final form of the approximate solution. We
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employ the following differential operator to incorporate the different time scales.

d 0 8d- + (5.20)

Further, we still must conserve angular momentum and so we impose the constraint

I1x112 = 1,V t > 0 (5.21)

This results in the same orthogonality condition on all O(c) terms as seen in the

cartesian solution. Substituting Eqs. 5.17 through 5.20 into Eqs. 5.14 through 5.16

and collecting 0(1) terms yields

axlO
- 0 (5.22)

"8P0 0 (5.23)
ato

'kO - 02(i3X - (5.24)
ato

This system is subject to the following initial conditions.

xIo(0,0) = xi(O)

Po(O,0) = p(0)

Oo(0) = 20(0)

IIxolI2 = 1,V t >o

Note that the constraint refers to the total component of angular momentum. The

solution to the 0(1) system with the application of initial conditions is

xio(to, ti) = Ao(t 1) == Xio(0,0) = Ao(0) = x1(0)

po(to,it) = po(tI) = Po(O,O) = Po(O) = p(O)
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lko(to) "= j- [2ga + 2uso - 2i 3xIo] da

- gt' + 2 (po - i3x1 o) to + 0o (5.25)

where 0o is defined so that the initial conditions are satisfied.

Oo = 2tan-' (x3(0)/x 2(0)) (5.26)

To simplify the equations, we make the following definitions.

k = Ito- i3x1(0) (5.27)

1(to) = t + 2kto + 0o ==o- o(to) = f'(to) (5.28)

The 0(b) system of equations is

axi = aXio (5.29)•o= p°2sin4'o - - 0 -7
at0  &
ap = -xiopo sin Vo - a-- (5.30)
at0  at I

=o -2i 3x6l - 2xo - 2xiocosiko (5.31)

subject to the following initial conditions

xu(0,0) = 0

pi(O,O) = 0

S(o) = 0

Xo-X 1 = O,Vt>O

We solve Eq. 5.29 to find the slow time dependence of A0 .

Xii = jo t [po(ti)2 sin (go2 + 2k1w + O0) - Ao'(t,)] do (5.32)
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-po(t 1 )2 2[X {cos (k2 /g _ 00)s (S (k + gto))

- c (i.L(k + ,osin (k2/g - o)

Cos (ck/g- o) s ( _2(k))

+ C ( ŽF2(k)) sin (k2/g _ -0 Ao1(t1)to + AI(ti) (5.33)

The "constant" of integration for this equation is A, (tj). Again, the term "constant"

indicates that the term is constant with respect to to. The complete form of the

solution is as given, however, to simplify the remainder of the analysis we use the

following definitions.

Co(f) = cos fda

-- I cos (k2/g _ e0)C (Y.-(k +

+ S (Y (k +gto)) sin ( 2/g _o)

- Cos (k21g _ O0)c (%F2(k))

- S (k)) sin k•2/g _ -). (534)

(5.35)

S 0(f) = sin fdt

_- • {cos (k-2/g -o 0) (S, 2(k + g°o

ý ( k'Ic+ 9 to)) sin (k2/g 0o)

-Cos (k.2/g _ e0 )s (k(k))

+ e&, ( .(k)) sin (k 2/g _ 00} (5.36)
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where

f(o,) = gc72 + 2ko' + 0o (5.37)

The Fresnel Sine and Fresnel Cosine functions are as defined in Chapter 3, and

their integrals are developed in detail in Appendix B. Each term in the x1l solution

is bounded with the exception of A•(ti). In order to have a completely bounded

solution, A,(t1 ) must equal zero and by application of the initial condition

Ao(ti) = constant = xi(0) (5.38)

The resulting solution for x1l is

x1l(to, ti) = p2(t 1)So(f) + AI(t 1 ) (5.39)

We now solve Eq. 5.30.

Pi= 0 t• [-xi(0)Po(ti)sin (go2 + 2ko + 0o) - Po(ti)J do, (5.40)

This equation is very similar to Eq. 5.32. Again, in order to have bounded solutions,

we must have p'o(t 1 ) = 0 and by application of the initial condition

po(t 1 ) = constant = p(O) (5.41)

As a result

p1(to, t1) = -xi(O)p 2(0)So(f) + pl(tl) (5.42)

Turning our attention to Eq. 5.31, we write it in terms of the Eqs. 5.39 and

5.25 which have been derived.

-1 -2i 3 p= ()So(f) -2 2x1(0) - 2x(J) cosf (5.43)
ato
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We employ the following relation (see Appendix B).

1 S. (f(o)) do
1cs- cosO0)+ -S(()

tS0 (f(t)) + I(cofg fS 0 (f(0)
2g g

Thus, the solution is

01(t0) = -2i3p 2 (O) toSo(f) + 1 (cos f - cos 0o) + Sof

- 2to [i3Al(ti) + xi(O)J - 2x 1(O)Co(f) + / (5.44)

The constant of integration is / and by application of the initial condition we see

that P = 0. With the 0(6) system of equations solved, we must determine the nature

of the constants of integrations A,(tl)and p1(ti). Note that from the orthogonality

condition specified on the 0(6) system, we require that

Xo-Xi =O, Vt>O

Performing this product results in

xi(0)AI(ti) + p(O)pi(ti) = 0 (5.45)

Therefore, if Al(ti) = 0, we must require p1 (t1 ) = 0. In order to determine AI(t 1 ),

we proceed to the 0(62) system of equations.

ax12 8X1(546
& = 2popi sin Oo + po201 cos Oo- &o 1  (5.46)

a09P at1OP2 = -(xlop 1 + x,1 po) sin ¢o - poxiotki cos ko - (5.47)
Oto at,
a0p2 - -2i 3x1 2 - 2x10 - 2xjo cos iko - 2xiomi cos Oo - 2x10 sin iPo (5.48)
at0
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This system is subject to the following initial conditions.

x12(0,0) = 0

P2(0,0) = 0

02(0) = 0

Ilx1112 +2xox 2  = 0, Vt>0

Expressing Eq. 5.46 in terms of known functions

x12  -2p 2(0)xI(O)So(f)sin f + 2p(O)p 1(t )sin f
Oto

2i3 p'(0) toSo(f) + 1 (Cos f - Cos 00) + k ( Cosf

2p 2(0) [i3Ai(ti) + x,(0)] tocos f

- 2x,(0)p2 (0)Co(f) cos f - AuI(ti) (5.49)

The solution to Eq. 5.46 is

x12(to, tI) = -p 2(0)xI(0) [So(f)]2 + 2p(0)pI(t1)So(f)
2p2(o)
- 2g (i 3AI(ti) + x,(0)) [sin f - sin 0o]

+ 2p()(i 3A1(ti) + x1(0)) Co(f)
g

- x1(0)p 2 (0) [C(f)]12 + 2i3p2(0) cos 00C"(f)
2g

2i 3p4(0) [to 1 (2f1
2g 2+C 2~

2i 3p4(0) 'So(f) sin f to
2g - 2

+ 1Co(2f)] + toA1 I(t1 ) + A2(t1 ) (5.50)

Every term in the solution is bounded except A•(tI). Therefore we require that it

be equal to zero and by application of initial conditions we find that A1 (tI) = 0.
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Further, by Eq. 5.45 we find that p9 (t1 ) must also equal zero. However, we show the

same process that we applied to Eq. 5.47 to verify this.

1P2 - -po(p• - xi 2 )S.(f) - xjp1 sin/
&t0

+ 2i3po3x [toSo(f) + I (cos f - cos 0o) + kSo(f) cos f

+ 2x, 2 poto cos f + 2x, 2PoCo(f) cos f - pII(t 1 ) (5.51)

Using the same relations that solved Eq. 5.46 we have the solution

p2(to, tj) = 1p(O) [p2(0) - x12(0)] [So(f)] 2 - xI(O)p 1(t 1 )So(f)

+ 2i3p3(O)xI(O)[) 1S(f)sinf + •-C(2f)

1 1 + 2x, 2p(O) [sin f - sin 0o1- 2- cos 0oC 0(f). + [sng 0
2g I 2g

- 2x, 2(O)p(O)kc(f) +.. 2x, 2(0)p(O) [Co(f)]2

g 2
- topil(tl) + P2(tl) (5.52)

This solution is the same as that for the X12 solution in that all terms are bounded

except p,(ti). Therefore pi(ti) = 0 and by application of initial conditions, we find

that pl(t1 ) = 0 as required. With the constants of integration determined, we now

return to Eqs. 5.39 and 5.42 and note their final solution.

xII(to,t1) - -po2(0)S 0 (f) (5.53)

pi(4o, ti) = -xI (0)po(0)S(f) (5.54)

To summarize, the approximate solution to O(c) using cylindrical coordinates

is as follows.

xj(t) = X, - -pS2(O)S (f) + 0(6 2) (5.55)
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p(t) = Po(o) - -"x(o)M(o)So(f) + 0(,') (5.56)

= 2 - ac i3P1(O) tSo(f) + 1 (Cos f Cos o)

+ So()] + tx(O) - xi(O)Co(f)}}+o(e•) (5.57)

Finally

x2(t) = p(t) cos 0(t) (5.58)

x3(t) = p(t) sin 0(t) (5.59)

Recognize that to 0(1), we have satisfied the conservation of angular momen-

tum requirement. In the beginning of the analysis, we made the assumption of no

slow time dependence in the phase angle. Careful analysis of Eqs. 5.55 through 5.57

reveal some interesting results. Although the equations for x, and p were derived

with the assumption of some slow time dependence, it never shows up in the fi-

nal form of the solution. However, slow time dependence is implicitly found in the

equation for 0 (Eq. 5.57) even though it was not assumed to be there initially. As

a result, by using cylindrical coordinates, the approximate solution is essentially a

series expansion of the system of equations using a single time scale.

5.1 A Comparison Between the Cartesian and Cylindrical Approximate Solutions

5.1.1 Oblate Gyrostats. Figures 5.1 through 5.3 present the relative error

associated with each component of angular momentum for both the cartesian and

cylindrical solutions. The model is a near axisymmetric (e = 0.01) oblate gyrostat

with initial state [0.7; 0.4.; 0.59161; 01. As seen, the solutions for the x, component are

identical. This is expected since the underlying assumptions between the solutions

are the same. Specifically, the initial conditions for x2 and x3 are used in both

forms. Further, both solutions use the assumption of no slow time dependence. The
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transverse components show a dramatic difference in the early portion of the spinup

maneuver. The cylindrical solution does not exhibit the "spike" that the cartesian

solution displays. In order to examine this finding in more detail, we compare the

two solutions using the same oblate gyrostat starting at a point further from the

oblate equilibrium point (Figures 5.4 and 5.5). Here we observe the same behavior

early in the spinup, but also notice that the cartesian solution displays less error

than the cylindrical solution towards the end of the spinup maneuver. To explain

this behavior, recall the development of each solution. In the cartesian solution, the

"spike" is the result of phase error caused by the approximation of a constant value

for the x~l function. The cylindrical solutions makes no such approximation and so

there should not be any significant phase error associated with this region of the

spinup. Towards the end of the spinup maneuver, the lower error of the cartesian

solution is the result of the x~l approximation. This illustrates an interesting result

between the two solutions. As noted in Chapter 4, the x~i approximation impacts

the transverse components in that it captures the slowly varying frequency of the

system. The cartesian solution is based on a fast and a slow time scale. The slow

time scale captures the phase or frequency of the system. By assuming the constant

value for the x~l function was xliappox(t = oo), the frequency adjustment of the

system is incorporated in the transverse components for t -. oo. As seen, this

phase correction is not as accurate in the early portion of the spinup, but increases

in accuracy as time increases. The cylindrical solution implicitly incorporates slow

time dependence but it does not benefit from the t -- oo phase correction that the

cartesian solution has. As a result, the cylindrical solution has a larger error in the

latter portion of the spinup maneuver.

To illustrate this point in a different light, observe Figure 5.6. Here we compare

the maximum error detected between cartesian and cylindrical solutions in the last

ten percent of spinup for a near axisymmetric (e = 0.01) oblate gyrostat starting at

incremental points on the momentum sphere. The initial x, component is the y axis
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Figure 5.1. Comparison between cartesian and cylindrical equations for percent
relative error of the x, component of angular momentum of an oblate
gyrostat with initial conditions x, = 0.7, x,2 =0.4, X3 = 0.5916 1 and e
g = 0.01.

State Vectorm4.7;.4;.591 61'01
0.7
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000.3

;II.

0 0.2 0.4 0.6 0'.8
mu

Figure 5.2. Comparison between cartesian and cylindrical equations for percent
relative error of the X2 component of angular momentum of an oblate
gyrostat with initial conditions x, = 0.7, X2 = 0.4, X3 = 0.59161 and c
g = 0.01.

5-13



Stem vector-j.7;.4;.5e1 61 -01

OAG

0.3 ~Cyrmlandca Cooralnatee

A 0.2 . .. . .. . ......... ....... A ..

itI

0.05 A.

04 0

Figure 5.3. Comparison between cartesian and cylindrical equations for percent
relative error of the X3 component of angular momentum of an oblate
gyrostat with initial conditions x, = 0.7, X2 =0.4, x3 = 0.59161 and e=
g =0.01.
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Figure 5.5. Comparison between cartesian and cylindrical equations for percent rel-
ative error of the X3 component of angular momentum of an oblate gyro-
stat with initial conditions x, = 0.4, X2 = 0.64807, x3 = 0.6480T and c
g = 0.01.

while the initial X2 and X3 Components are X2 = X3 - /1-•/.The increased

accuracy of the t -- + oo phase approximation in the cartesian solution is clearly seen.

5.1.2 Prolate Gyrostats. Observation of the early portion of spinup in

Figures 5.4 through 5.5 leads us to believe that the cylindrical solution is better

equipped to approximate prolate spinup tha•n the cartesian solution. Because the

cylindrical solution is not hampered by a relatively large phase error in the early

portion of the spinup maneuver, we expect better performance in the region near

the instantaneous separatrices.

Figures 5.7 through 5.9 compare the numerical, cylindrical and cartesian solu-

tions for spinup of a prolate gyrostat. Here we see the large influence of the error

made by the x1i approximation in the cartesian solution. In essence, the cartesian

solution starts out with the wrong information and the solutions keeps getting worse.

1-1

% I'



x2CoMponent CuirMan cooa0.o ................... ........ ........ ............. ................

0 .. .. x 2 C o rm. ;M C y W C o = "
O A.• I.l .......... .- ................ ,.. .............. ................. ?: ............... ,. ................

-x C o m p o n e n t; C y IId rk o aI C 0 016
0 .7 - ;it .......... , ................ ?............... . ................ ;............... :............. ."

.0 . 5 . ' -..... .;.. . . . . . . . . . . . . . ... ................ ! ............... ..............

• O .A .... -• ................ "................. .......... . ... i ............... ]................

0 .2 . . :..: • • . . .. . . . . . . . . . .... ....... . . . ..,......... . ................0.4

02............... .... ....... ..... .................. .........,I ... ... ... ... ... ... .. .......-..-..-.- ,

0 2 4 a 8 10 12
Maxinum Rel AWve ewar In AnruLar Momentum

Figure 5.6. Comparison between cartesian and cylindrical equations of maximum
error detected in the last ten percent of spin up as a function of initial
conditions for an oblate gyrostat.

The cylindrical solution, however, approximates the numerical results very closely in

the early portion of the spinup. There is still the small phase error that occurs at

the point were the instantaneous separatrix crossing really does occur. Remember

that both solutions are derived from linear systems that approximate the nonlinear

governing equations. The total absence of a separatrix in either approximate solu-

tion is the cause of the phase error that develops when the approximate solutions

attempt to model the governing nonlinear equations. Figures 5.10 through 5.12 illus-

trate the phase error in the cylindrical solution induced by inaccurate modelling of

an instantaneous separatrix crossing. While excellent qualitative results are evident

in Figures 5.7 through 5.9, the phase error at the instantaneous separatrix crossing

propagates the error in the solution through out the remainder of the spinup.

5.1.3 Transverse Spinup. Figures 5.13 through 5.15 compare both multiple

scales solutions with numerical results for the transverse spinup of a prolate gyrostat.

The initial conditions are slightly offset from the stable flat spin equilibrium point.
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Figure 5.7. Numerical vs cylindrical and cartesian coordinate approximate solution
of the x, component of angular momentum of a prolate gyrostat with
initial conditions x, = 0.4,X2 = 0.64807, x3 = .64807 and c g =0.01
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Figure 5.8. Numerical vs cylindrical and cartesian coordinate approximate solution
of the X2 component of angular momentum of a prolate gyrostat with
initial conditions x, = 0.4,X 2 = 0.64807, X3 = 0.64807 and e =g=0.01
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Figure 5.9. Numerical vs cylindrical and cartesian coordinate approximate solution
of the x3 component of angular momentum of a prolate gyrostat with
initial conditions x, = 0.4, X2 = 0.64807, x3 =0.64807 and e =g =0.01
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Figure 5.11. Percent relative error of the x2 component of angular momentum of
a prolate gyrostat using cylindrical coordinates with initial conditions

=X = 0.7, X2 - 0.4, X3 = 0.59161 and e = g = 0.01
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Figure 5.12. Percent relative error of the x3 component of angular momentum of
a prolate gyrostat using cylindrical coordinates with initial conditions
X1 = 0.7, z 2 = 0.4, X3 = 0.59161 and e = g = 0.01
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Figure 5.13. Numerical vs cylindrical and cartesian coordinate approximate solu-
tion of the x, component of angular momentum of a prolate gyrostat
during transverse spinup.

The significant increase iu accuracy during the early portion of the spinup for the

cylindrical solution is evident. The reason for the improved accuracy is the same

as seen during prolate spinup. The cylindrical solution is not hampered by a larger

error early in the spinup. However, the essential result is the same as in the cartesian

solution. Extremely small torque values (which implies extremely small e values) are

required to keep the trajectory near the stable fiat spin equilibrium point.

5.2 Summary

The cylindrical coordinate multiple scales solution developed by Lt Col Baker

provides excellent results. When used to model oblate gyrostats, the approximate

solution is much more accurate in the early portion of the spinup maneuver. This is

due to the fact that the cylindrical solution is not dependent on the xII approxima-

tion that the cartesian solution has. An interesting result, however, is that this same
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Figure 5.14. Numerical vs cylindrical and cartesian coordinate approximate solu-
tion of the x2 component of angular momentum of a prolate gyrostat
during transverse spinup.
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Figure 5.15. Numerical vs cylindrical and cartesian coordinate approximate solu-
tion of the X3 component of angular momentum of a prolate gyrostat
during transverse spinup.
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Zl approximation provides better results for oblate gyrostats in the latter portion

of the spinup maneuver.

The cylindrical solution does have superior performance when modelling pro-

late gyrostats. While the solution is still not able to model an instantaneous sep-

aratrix crossing accurately, it does provide excellent qualitative information for the

spinup maneuver. Further, we expect that spinup which begins closer to the prolate

equilibrium point results in more accurate approximations.

Finally, both the cartesian and cylindrical solutions prove to be inadequate

when modelling transverse spinup. The extremely small torque values required ren-

der the solution impractical.
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VI. Conclusions and Recommendations

6.1 Conclusions

Two approximate solutions for the spinup of a near axisymmetric gyrostat us-

ing the method of multiple scales were derived. The difference in transverse inertias

was chosen as the small parameter. This selection had the fortunate property of

transforming the system of equations that described the spinup from a nonlinear

system to a series of linear systems. The first solution, derived from cartesian co-

ordinates, incorporated the use of two different time scales to capture the slowly

varying frequency of the system. To derive the solutions, an approximation had

to be made for the O(e) term of the x, component of angular momentum. This

approximation induced a large phase error in the transverse components during the

first ten percent of spinup but had the effect of reducing phase error in the last ten

percent of spinup. The solution was compared to the results of numerical integration

for oblate and prolate configurations. Further, the solution was compared for the

flat spin recovery of a prolate gyrostat. Excellent results were obtained for oblate

configurations. When we confined our error analysis to the last ten percent of the

spinup maneuver, we found less then one percent error in all three components of

angular momentum. This result applied to gyrostats with a one percent difference

in transverse inertias and initial conditions in the northern half of the momentum

sphere.

The results for prolate configurations were hampered by the extremely non-

linear nature of prolate spinup trajectories. Because the approximate solution was

developed from a series of linear systems, the approximation breaks down in regions

where the trajectory is really influenced by the instantaneous separatrices associated

with prolate spinup. It was found, however, that if the solution of the numerical

integration at a point in time after the last bifurcation on the momentum sphere

were used, reasonable results could still be obtained for the remainder of spinup.
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Finally, the transverse spinup of a prolate gyrostat was shown to be completely in-

adequate. The trajectory for the spinup began near a stable flat spin center and

almost immediately crossed an instantaneous separatrix due to an excessively large

torque value. Reducing the torque value to an acceptably small value would require

a truly axisymmetric gyrostat.

A second multiple scales solution was derived by Lt Col William P. Baker, As-

sociate Professor of Mathematics, United States Air Force Institute of Technology.

Lt Col Baker surmised that by transforming the governing equations to cylindri-

cal coordinates, a solution could be derived that did not have such a large phase

error early in the spinup maneuver. In its final form, the cylindrical solution did

not have an explicit slow time dependence, but did have the slow time dependence

show up implicitly in the phase equation. A comparison between the cartesian and

cylindrical solutions for oblate gyrostats produced two interesting findings. In the

early portion of the spinup, the cylindrical solution proved far superior to the carte-

sian solution. The reason was that the cylindrical solution was not hampered by

any approximations in its derivation. However, in the final portion of the spinup,

the cartesian solutions phase correction at t = oo proved more accurate than the

cylindrical solution.

The cylindrical solution was much better at modelling prolate spinup than

the cartesian solution. By not having the initial phase error induced by the xll

approximation, the cylindrical solution was better at modelling the trajectory as the

instantaneous separatrices approached. However, the solution was still not able to

accurately model the instantaneous separatrix crossing.

6.2 Recommendations

There are three areas in which further study is warranted.

1). The approximate solutions developed in this thesis were only derived to

approximately O(e). The term "approximately" is used because we ignored some of
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the constants of integration in both the cartesian and cylindrical solutions. Addi-

tionally, the O(e) expansion limits the amount of torque that might be applied to

the system. If more accurate, or much smaller torque values are desired, the sys-

tem of equations must be extended to O(e9 ). This will require either an analytic or

approximate solution to the following integrals.

,So(a) cos ada

C0 (a) sin ada

2). For prolate configurations, the actual trajectories lie in regions of the

momentum sphere influenced by instantaneous separatrices. If the initial conditions

start fairly close to the prolate equilibrium point, the trajectory encounters smaller

phase error at the separatrix crossing. A matched asymptotic expansion might be

able to correct the approximate solution in this region.

3). The approximate solution derived in this thesis is for a near axisymmetric

gyrostat. Analysis of the solutions indicated that reasonable results could be achieved

for a gyrostat with a two percent difference in transverse inertias. In order to expand

the range of asymmetry further, an alternate technique will have to be used on the

nonlinear system of equations.
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Appendix A. Straightforward Expansion Method Solution Terms

The following terms are to be used in Eqs. 3.32 and 3.33 for the approximate

solution using the straightforward expansion method. Overbracketed terms are sec-

ular.

al = 7 Q/ •oX, cos cos(f)

_-La i3k •-=•x 3  ( c osf
g3/2 4

+ - i3 4 X3o Cos)

1.•

+ 7QVi•2 XkoX23 cs (f) sin(~-
+ 3/2a i3-t2x3 COS (f) sin (f

+ -La i3  Cos

- •03a i1 3 kijx2X cos ()sin (f)
V/A-1

+ -cL -t~o i-i sin3C (f)Si
vr 48 ( J

2 !I2+ 3/ "a ij -- |cos (f) sin (f)

+ g tX23k x cos (f ) sin(f

~i-t!X3.COSk2 sin (f)

!XtO3 C - (z n~j)
7g V!8 9
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a IXIox2 sin (k) sin (f)

-g3/2 i 3 k X2/X3 sin k sin (f)

- a i3 tX 2x 3 sin (k-) sin(f) (A.1)

a2 =r 48k fXIOX3 COS (9 ) COS

-g3/•iIi/
4 x c••==oe co(f)

-7.i 3 k tx 2 k3 co ( .c(f)
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kr 2
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-!X COS /co(f) Sin (2)

-~~ f;(tX)Csin(f)
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Appendix B. Fresnel Function Integrals

The majority of equations derived in this thesis were obtained using the sym-

bolic manipulation program, Mathematica 2. 0 for SPARC by Wolfram Research Inc.

(15). This program was able to solve some of the integrals that involved the Fresnel

Sine and Fresnel Cosine functions. However, in the cylindrical coordinate derivation,

the program was not able to solve many of the equations and so they were solved

by Lt Col William P. Baker, Associate Professor of Mathematics, United States

Air Force Institute of Technology. These derivations are included here in full as a

reference.

We begin with the basic definition of Fresnel Sine (S) and Fresnel Cosine (C)

functions (1:300)

C(:)= f cos (ir)dt

S(.) = fo sin (w )dt

1) The first integral is a slightly more complex cosine function.

0t oo( + 2ko,)do = jcoo [(i4++ 2_ k] do

Using a simple trigonometric identity

J{ cos[(Vu+)]cook + sin a+i

We now employ a change of variables. Let

F2= -(go +k)

dv= -gg d
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The resulting integral is

v J.(t)[ (v2) cos L+ sin v )sin I] /idv

which has the solution

F 1=M o f i, k 2+ (v) ink12I Otk (B.1)

Using a similar process we find that

f t sn(g0, 2 +2ka)d d f :liri [S, sn +=Cos k2- C(v) sin k ]l*O~) (B.2)

2) The second integral is the product of a Fresnel cosine and a cosine function.

C0 (f(a)) cos f(o)do, (B.3)

As in Chapter 5, we define the following terms

Co(f) = 0cos fdt

So(f) = 0sin fdt

where

f = gt2 + 2kt + Oo (B.4)

Note:

dt oS(f) = sin f(t)

d
dCo(f) = f(t)
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To solve the integral we employ the integration by parts technique. let

u = C(fO(t))

du = cos f (t)dt

I udU 2' 2 [C, (f(t))]2  (B.5)

Using a similar process we find

fo S (t)l (B.6)
So (f(a)) sin f(or)da -[S (f(t))12

3) The third integral is a complicated Fresnel cosine function.

1 0 Cý (ga2 + 2ko) do

Using the definition of a Fresnel cosine we have

J 0 COS (ga2 +2ka) dads

Changing the order of integration results in

- Jt (t _ a)cos (ga2 + 2ka)da

Now we add and subtract the same term

t jt COS 01 2 + 2I )da - 1 t (2gU+2k)Cos(gor2+2ko)dU

+ •k t cos (ga 2 + 2ka)da
2 o
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The resulting solution is

=tC0 (Pt + 2ke) - sin (gt' + 2kt) + kC 0' (gt2 + 2k1) (B.7)
(9 2g

Using a similar process we find

I °S (ga2 + 2k1) do = tS0 (gtI + 2kt) + 1 [COS (gt2 + 2kt) - 1i + kS" (02 + 2kt)

0 F9 9
(B.8)

4) The fourth integral involves the product of the function and the variable of inte-

gration.

j ocos (f(a))do = j ocos (ga2 + 2ka + 9o)d (B.9)

Again, we add and subtract the same term

jg1 (2gu + 2k) cos (go2 + 2ko + 0o) do

The solution to the integral is

- [sin f(t) - sin 0o] - -C0 (f(t)) (B.1)

Using a similar process we find

a sin (f(a))da=2[COSfM)-cOSOo]- kSo((t)) (B.11)

5) The fifth integral is the cosine function squared.

j tcos2f do = [I +Cos 2f)dor
10t 1

- + 1oC(2f) (B.12)
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6) The sixth integral is the product of the variable of integration, a Fresnel sine

function and a cosine function.

o[(2go, + 2k)S.(f)cos f]da

We employ the integration by parts technique. Let

U = So(f)

dv = (2gcr+2k)dor

This results in

= So(f)sin fit - J0tsin2 fda

Using a trigonometric relation, we have the solution

= So(f)sin f - t+ IC°(2f) (B.13)
2-2
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